Is quantum Einstein gravity nonperturbatively renormalizable?

被引:185
|
作者
Lauscher, O [1 ]
Reuter, M [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
关键词
D O I
10.1088/0264-9381/19/3/304
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We find considerable evidence supporting the conjecture that four-dimensional quantum Einstein gravity is 'asymptotically safe' in Weinberg's sense. This would mean that the theory is likely to be nonperturbatively renormalizable and thus could be considered a fundamental (rather than merely effective) theory which is mathematically consistent and predictive down to arbitrarily small length scales. For a truncated version of the exact flow equation of the effective average action, we establish the existence of a non-Gaussian renormalization group fixed point which is suitable for the construction of a nonperturbative infinite cut-off limit. The truncation ansatz includes the Einstein-Hilbert action and a higher derivative term.
引用
收藏
页码:483 / 492
页数:10
相关论文
共 50 条
  • [1] Renormalizable theory of quantum gravity
    Ne'eman, Y.
    Lee, C.-Y.
    Lecture Notes in Physics, 1991, (375):
  • [2] Renormalizable quantum theory of gravity
    Borodikhin, V. N.
    PHYSICA SCRIPTA, 2024, 99 (11)
  • [3] Perturbatively renormalizable quantum gravity
    Morris, Tim R.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2018, 27 (14):
  • [4] NONPERTURBATIVELY RENORMALIZABLE QUANTUM-FIELD THEORIES IN 2+1 DIMENSIONS
    KOVNER, A
    ROSENSTEIN, B
    GAT, G
    HELVETICA PHYSICA ACTA, 1992, 65 (2-3): : 411 - 412
  • [5] Super-renormalizable quantum gravity
    Modesto, Leonardo
    PHYSICAL REVIEW D, 2012, 86 (04):
  • [6] Renormalizable quantum gauge theory of gravity
    Wu, N
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 38 (02) : 151 - 156
  • [7] Renormalizable and Unitary Model of Quantum Gravity
    Larin, S. A.
    SYMMETRY-BASEL, 2019, 11 (11):
  • [8] TOWARDS A RENORMALIZABLE THEORY OF QUANTUM-GRAVITY
    NEEMAN, Y
    SIJACKI, D
    DIFFERENTIAL GEOMETRICAL METHODS IN THEORETICAL PHYSICS, 1988, 250 : 333 - 343
  • [9] Quantum Einstein gravity
    Reuter, Martin
    Saueressig, Frank
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [10] Renormalization group in super-renormalizable quantum gravity
    Modesto, Leonardo
    Rachwal, Leslaw
    Shapiro, Ilya L.
    EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (07):