Rainfall-Runoff Modelling Using Hydrological Connectivity Index and Artificial Neural Network Approach

被引:51
|
作者
Asadi, Haniyeh [1 ]
Shahedi, Kaka [1 ]
Jarihani, Ben [2 ]
Sidle, Roy C. [2 ,3 ]
机构
[1] Sari Agr Sci & Nat Resources Univ, Dept Watershed Management, Sari 4818168984, Iran
[2] Univ Sunshine Coast, Sustainabil Res Ctr, Sunshine Coast, Qld 4556, Australia
[3] Univ Cent Asia, Mt Soc Res Inst, Khorog 736000, Tajikistan
关键词
rainfall-runoff modelling; Artificial Neural Network; Index of Connectivity; input selection; TIME-SERIES; FUZZY-LOGIC; SEDIMENT; CATCHMENT; FLOW; SIMULATION; PERFORMANCE; PREDICTION; MANAGEMENT; VARIABLES;
D O I
10.3390/w11020212
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The input selection process for data-driven rainfall-runoff models is critical because input vectors determine the structure of the model and, hence, can influence model results. Here, hydro-geomorphic and biophysical time series inputs, including Normalized Difference Vegetation Index (NDVI) and Index of Connectivity (IC; a type of hydrological connectivity index), in addition to climatic and hydrologic inputs were assessed. Selected inputs were used to develop Artificial Neural Networks (ANNs) in the Haughton River catchment and the Calliope River catchment, Queensland, Australia. Results show that incorporating IC as a hydro-geomorphic parameter and remote sensing NDVI as a biophysical parameter, together with rainfall and runoff as hydro-climatic parameters, can improve ANN model performance compared to ANN models using only hydro-climatic parameters. Comparisons amongst different input patterns showed that IC inputs can contribute to further improvement in model performance, than NDVI inputs. Overall, ANN model simulations showed that using IC along with hydro-climatic inputs noticeably improved model performance in both catchments, especially in the Calliope catchment. This improvement is indicated by a slight increase (9.77% and 11.25%) in the Nash-Sutcliffe efficiency and noticeable decrease (24.43% and 37.89%) in the root mean squared error of monthly runoff from Haughton River and Calliope River, respectively. Here, we demonstrate the significant effect of hydro-geomorphic and biophysical time series inputs for estimating monthly runoff using ANN data-driven models, which are valuable for water resources planning and management.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] An artificial neural network approach to rainfall-runoff modelling
    Dawson, CW
    Wilby, R
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 1998, 43 (01): : 47 - 66
  • [2] Artificial Neural Network for Modelling Rainfall-Runoff
    Tayebiyan, Aida
    Mohammad, Thamer Ahmad
    Ghazali, Abdul Halim
    Mashohor, Syamsiah
    PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2016, 24 (02): : 319 - 330
  • [3] Using artificial neural network approach for modelling rainfall-runoff due to typhoon
    Chen, S. M.
    Wang, Y. M.
    Tsou, I.
    JOURNAL OF EARTH SYSTEM SCIENCE, 2013, 122 (02) : 399 - 405
  • [4] Rainfall-runoff model using an artificial neural network approach
    Riad, S
    Mania, J
    Bouchaou, L
    Najjar, Y
    MATHEMATICAL AND COMPUTER MODELLING, 2004, 40 (7-8) : 839 - 846
  • [5] Artificial neural network rainfall-runoff modelling in varying domain
    Agarwal, A.
    Singh, J.K.
    Ray, S.
    Journal of the Institution of Engineers (India): Civil Engineering Division, 2002, 83 (NOV.): : 166 - 172
  • [6] Rainfall-runoff modelling using artificial neural networks: comparison of network types
    Kumar, ARS
    Sudheer, KP
    Jain, SK
    Agarwal, PK
    HYDROLOGICAL PROCESSES, 2005, 19 (06) : 1277 - 1291
  • [7] A Comparison of Emotional Neural Network (ENN) and Artificial Neural Network (ANN) Approach for Rainfall-Runoff Modelling
    Kumar, Suraj
    Roshni, Thendiyath
    Himayoun, Dar
    CIVIL ENGINEERING JOURNAL-TEHRAN, 2019, 5 (10): : 2120 - 2130
  • [8] Monthly rainfall-runoff modelling using artificial neural networks
    Machado, Fernando
    Mine, Miriam
    Kaviski, Eloy
    Fill, Heinz
    HYDROLOGICAL SCIENCES JOURNAL, 2011, 56 (03) : 349 - 361
  • [9] Extended rainfall-runoff modelling using artificial neural networks
    Minns, AW
    HYDROINFORMATICS '96, VOLS 1 AND 2, 1996, : 207 - 213
  • [10] Rainfall-Runoff Modelling: Conventional Regression and Artificial Neural Networks Approach
    Vyas, Sunil Kumar
    Sharma, Gunwant
    Mathur, Yogesh Prakash
    Chandwani, Vinay
    2016 INTERNATIONAL CONFERENCE ON RECENT ADVANCES AND INNOVATIONS IN ENGINEERING (ICRAIE), 2016,