FINITENESS CONDITIONS OF S-COHN-JORDAN EXTENSIONS

被引:0
|
作者
Matczuk, Jerzy [1 ]
机构
[1] Warsaw Univ, Inst Math, PL-02097 Warsaw, Poland
关键词
S-Cohn-Jordan extensions; injective endomorphisms; finiteness conditions; ENDOMORPHISMS; SEMIGROUPS;
D O I
10.1142/S0219498812500636
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let a monoid S act on a ring R by injective endomorphisms and A(R; S) denote the S-Cohn-Jordan extension of R. Some results relating finiteness conditions of R and that of A(R; S) are presented. In particular necessary and sufficient conditions for A(R; S) to be left noetherian, to be left Bezout and to be left principal ideal ring are presented. This also offers a solution to Problem 10 from [On S-Cohn-Jordan extensions, in Proc. 39th Symp. Ring Theory and Representation Theory, Hiroshima, ed. M. Kutami (Hiroshima Univ., Japan, 2007), pp. 30-35].
引用
收藏
页数:12
相关论文
共 50 条