Accurate Prediction of Noncovalent Interaction Energies with the Effective Fragment Potential Method: Comparison of Energy Components to Symmetry-Adapted Perturbation Theory for the S22 Test Set

被引:95
|
作者
Flick, Joanna C. [1 ]
Kosenkov, Dmytro [1 ]
Hohenstein, Edward G. [2 ,3 ]
Sherrill, C. David [2 ,3 ]
Slipchenko, Lyudmila V. [1 ]
机构
[1] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA
[2] Georgia Inst Technol, Sch Chem & Biochem, Ctr Computat Mol Sci & Technol, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Sch Computat Sci & Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
MOLECULAR-ORBITAL METHODS; DENSITY-FUNCTIONAL METHODS; GAUSSIAN-BASIS SETS; PI-PI-INTERACTIONS; QUANTUM-CHEMISTRY; WAVE-FUNCTION; FORCE-FIELD; DNA; TRANSITION; ELEMENTS;
D O I
10.1021/ct200673a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Noncovalent interactions play an important role in the stabilization of biological molecules. The effective fragment potential (EFP) is a computationally inexpensive ab initio-based method for modeling intermolecular interactions in noncovalently bound systems. The accuracy of EFP is benchmarked against the S22 and S66 data sets for noncovalent interactions [Jurecka, P.; Sponer, J.; Cerny, J.; Hobza, P. Phys. Chem. Chem. Phys. 2006, 8, 1985; Rezac, J.; Riley, K E.; Hobza, P. J. Chem: Theory Comput. 2011, 7, 2427]. The mean unsigned error (MUE) of EFP interaction energies with respect to coupled-cluster singles, doubles, and perturbative triples in the complete basis set limit [CCSD(T)/CBS] is 0.9 and 0.6 kcal/mol for S22 and S66, respectively, which is similar to the MUE of MP2 and SCS-MP2 for the same data sets, but with a greatly reduced computational expense. Moreover, EFP outperforms classical force fields and popular DFT functionals such as B3LYP and PBE, while newer dispersion-corrected functionals provide a more accurate description of noncovalent interactions. Comparison of EFP energy components with the symmetry-adapted perturbation theory (SAPT) energies for the S22 data set shows that the main source of errors in EFP comes from Coulomb and polarization terms and provides a valuable benchmark for further improvements in the accuracy of EFP and force fields in general.
引用
收藏
页码:2835 / 2843
页数:9
相关论文
共 14 条
  • [1] Accurate Prediction of Noncovalent Interaction Energies with the Effective Fragment Potential Method: Comparison of Energy Components to Symmetry-Adapted Perturbation Theory for the S22 Test Set (vol 8, pg 2835, 2012)
    Flick, Joanna C.
    Kosenkov, Dmytro
    Hohenstein, Edward G.
    Sherrill, C. David
    Slipchenko, Lyudmila V.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (10) : 4759 - 4760
  • [2] Comparison of the Effective Fragment Potential Method with Symmetry-Adapted Perturbation Theory in the Calculation of Intermolecular Energies for Ionic Liquids
    Tan, Samuel Y. S.
    Izgorodina, Ekaterina I.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (06) : 2553 - 2568
  • [3] Basis set consistent revision of the S22 test set of noncovalent interaction energies
    Takatani, Tait
    Hohenstein, Edward G.
    Malagoli, Massimo
    Marshall, Michael S.
    Sherrill, C. David
    JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (14):
  • [4] Benchmarking the Effective Fragment Potential Dispersion Correction on the S22 Test Set
    Kim, Shinae
    Kaliszewski, Chelsea M.
    Guidez, Emilie B.
    Gordon, Mark S.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2018, 122 (16): : 4076 - 4084
  • [5] Local energy decomposition of coupled-cluster interaction energies: Interpretation, benchmarks, and comparison with symmetry-adapted perturbation theory
    Altun, Ahmet
    Izsak, Robert
    Bistoni, Giovanni
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2021, 121 (03)
  • [6] Chemical Assignment of Symmetry-Adapted Perturbation Theory Interaction Energy Components: The Functional-Group SAPT Partition
    Parrish, Robert M.
    Parker, Trent M.
    Sherrill, C. David
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (10) : 4417 - 4431
  • [7] Benchmarking the effective fragment potential dispersion correction to Hartree-Fock and density functional theory on the S22 test set
    Kim, Shinae
    Kaliszewski, Chelsea
    Guidez, Emilie
    Gordon, Mark
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [8] Approaches for machine learning intermolecular interaction energies and application to energy components from symmetry adapted perturbation theory
    Metcalf, Derek P.
    Koutsoukas, Alexios
    Spronk, Steven A.
    Claus, Brian L.
    Loughney, Deborah A.
    Johnson, Stephen R.
    Cheney, Daniel L.
    Sherrill, C. David
    JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (07):
  • [9] Accurate non-covalent interaction energies on noisy intermediate-scale quantum computers via second-order symmetry-adapted perturbation theory
    Loipersberger, Matthias
    Malone, Fionn D.
    Welden, Alicia R.
    Parrish, Robert M.
    Fox, Thomas
    Degroote, Matthias
    Kyoseva, Elica
    Moll, Nikolaj
    Santagati, Raffaele
    Streif, Michael
    CHEMICAL SCIENCE, 2023, 14 (13) : 3587 - 3599
  • [10] Exploring Nature and Predicting Strength of Hydrogen Bonds: A Correlation Analysis Between Atoms-in-Molecules Descriptors, Binding Energies, and Energy Components of Symmetry-Adapted Perturbation Theory
    Emamian, Saeedreza
    Lu, Tian
    Kruse, Holger
    Emamian, Hamidreza
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2019, 40 (32) : 2868 - 2881