A TWO-DIMENSIONAL LOGIC FOR TWO PARADOXES OF DEONTIC MODALITY

被引:0
|
作者
Fusco, Melissa [1 ]
Kocurek, Alexander W. [2 ]
机构
[1] Columbia Univ, Dept Philosophy, New York, NY 10027 USA
[2] Cornell Univ, Sage Sch Philosophy, Ithaca, NY USA
来源
REVIEW OF SYMBOLIC LOGIC | 2022年 / 15卷 / 04期
关键词
deontic logic; Ross's puzzle; free-choice permission; two-dimensional logic; diagonalization; ACTUALITY; NECESSITY;
D O I
10.1017/S1755020320000337
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we axiomatize the deontic logic in Fusco (2015), which uses a Stalnaker-inspired account of diagonal acceptance and a two-dimensional account of disjunction to treat Ross's Paradox and the Puzzle of Free Choice Permission. On this account, disjunction-involving validities are a priori rather than necessary. We show how to axiomatize two-dimensional disjunction so that the introduction/elimination rules for boolean disjunction can be viewed as one-dimensional projections of more general two-dimensional rules. These completeness results help make explicit the restrictions Fusco's account must place on free-choice inferences. They are also of independent interest, as they raise difficult questions about how to "lift" a Kripke frame for a one-dimensional modal logic into two dimensions.
引用
收藏
页码:991 / 1022
页数:32
相关论文
共 50 条
  • [1] QUESTIONS IN TWO-DIMENSIONAL LOGIC
    Van Gessel, Thom
    REVIEW OF SYMBOLIC LOGIC, 2022, 15 (04): : 859 - 879
  • [2] PRESUPPOSITION AND TWO-DIMENSIONAL LOGIC
    BERGMANN, M
    JOURNAL OF PHILOSOPHICAL LOGIC, 1981, 10 (01) : 27 - 53
  • [3] Two dimensional Standard Deontic Logic [including a detailed analysis of the 1985 Jones–Pörn deontic logic system]
    Mathijs de Boer
    Dov M. Gabbay
    Xavier Parent
    Marija Slavkovic
    Synthese, 2012, 187 : 623 - 660
  • [4] Two dimensional Standard Deontic Logic [including a detailed analysis of the 1985 Jones-Porn deontic logic system]
    de Boer, Mathijs
    Gabbay, Dov M.
    Parent, Xavier
    Slavkovic, Marija
    SYNTHESE, 2012, 187 (02) : 623 - 660
  • [5] Dynamic deontic logic and its paradoxes
    Anglberger A.J.J.
    Studia Logica, 2008, 89 (3) : 427 - 435
  • [6] PARADOXES OF THE DEONTIC LOGIC: EVIDENCE OF A MISCONCEPTION
    da Silva, Ricardo Tavares
    KRITERION-REVISTA DE FILOSOFIA, 2017, 58 (138) : 673 - 690
  • [7] A two-dimensional metric temporal logic
    Baratella, Stefano
    Masini, Andrea
    MATHEMATICAL LOGIC QUARTERLY, 2020, 66 (01) : 7 - 19
  • [8] Interval logic in two-dimensional time
    Qiu, Zongyan
    Jisuanji Xuebao/Chinese Journal of Computers, 1999, 22 (05): : 455 - 459
  • [9] Logic cell in a two-dimensional system
    Campos-Canton, I.
    Lozoya-Ponce, R. E.
    Lozoya-Ponce, R. O.
    REVISTA MEXICANA DE FISICA, 2013, 59 (04) : 359 - 363
  • [10] A two-dimensional logic for diagonalization and the a priori
    Fusco, Melissa
    SYNTHESE, 2021, 198 (09) : 8307 - 8322