De Branges-Rovnyak spaces;
model subspaces of H(2);
integral representation;
hypergeometric functions;
D O I:
10.5802/aif.2408
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, we give an integral representation for the boundary values of derivatives of functions of the de Branges-Rovnyak spaces H(b), where b is in the unit ball of H(infinity) (C(+)). In particular, we generalize a result of Ahern-Clark obtained for functions of the model spaces K(b), where b is an inner function. Using hypergeometric series, we obtain a nontrivial formula of combinatorics for sums of binomial coefficients. Then we apply this formula to show the norm convergence of reproducing kernel k(omega,n)(b) of evaluation of the n-th derivative of elements of R(b) at the point omega as it tends radially to a point of the real axis.
机构:
St Petersburg State Univ, Dept Math & Mech, St Petersburg 198504, RussiaSt Petersburg State Univ, Dept Math & Mech, St Petersburg 198504, Russia
Baranov, Anton
Fricain, Emmanuel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lyon 1, Inst Camille Jordan, CNRS, UMR 5208, F-69622 Villeurbanne, FranceSt Petersburg State Univ, Dept Math & Mech, St Petersburg 198504, Russia
Fricain, Emmanuel
Mashreghi, Javad
论文数: 0引用数: 0
h-index: 0
机构:
Univ Laval, Dept Math & Stat, Quebec City, PQ G1K 7P4, CanadaSt Petersburg State Univ, Dept Math & Mech, St Petersburg 198504, Russia