INTEGRAL REPRESENTATION OF THE n-TH DERIVATIVE IN DE BRANGES-ROVNYAK SPACES AND THE NORM CONVERGENCE OF ITS REPRODUCING KERNEL

被引:12
|
作者
Fricain, Emmanuel [1 ]
Mashreghi, Javad [2 ]
机构
[1] Univ Lyon 1, CNRS, UMR 5208, Inst Camille Jordan, F-69622 Villeurbanne, France
[2] Univ Laval, Dept Math & Stat, Quebec City, PQ 61V OA6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
De Branges-Rovnyak spaces; model subspaces of H(2); integral representation; hypergeometric functions;
D O I
10.5802/aif.2408
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give an integral representation for the boundary values of derivatives of functions of the de Branges-Rovnyak spaces H(b), where b is in the unit ball of H(infinity) (C(+)). In particular, we generalize a result of Ahern-Clark obtained for functions of the model spaces K(b), where b is an inner function. Using hypergeometric series, we obtain a nontrivial formula of combinatorics for sums of binomial coefficients. Then we apply this formula to show the norm convergence of reproducing kernel k(omega,n)(b) of evaluation of the n-th derivative of elements of R(b) at the point omega as it tends radially to a point of the real axis.
引用
收藏
页码:2113 / 2135
页数:23
相关论文
共 4 条