Interpretability of artificial neural network models in artificial intelligence versus neuroscience

被引:24
|
作者
Kar, Kohitij [1 ,2 ,3 ,4 ]
Kornblith, Simon [5 ]
Fedorenko, Evelina [2 ,3 ]
机构
[1] York Univ, Ctr Vis Res, Dept Biol, Toronto, ON, Canada
[2] MIT, McGovern Inst Brain Res, Cambridge, MA 02139 USA
[3] MIT, Dept Brain & Cognit Sci, Cambridge, MA 02139 USA
[4] MIT, Ctr Brains Minds & Machines, Cambridge, MA 02139 USA
[5] Brain Team, Google Res, Toronto, ON, Canada
关键词
D O I
10.1038/s42256-022-00592-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The notion of 'interpretability' of artificial neural networks (ANNs) is of growing importance in neuroscience and artificial intelligence (AI). But interpretability means different things to neuroscientists as opposed to AI researchers. In this article, we discuss the potential synergies and tensions between these two communities in interpreting ANNs.
引用
收藏
页码:1065 / 1067
页数:3
相关论文
共 50 条
  • [1] Interpretability of artificial neural network models in artificial intelligence versus neuroscience
    Kohitij Kar
    Simon Kornblith
    Evelina Fedorenko
    Nature Machine Intelligence, 2022, 4 : 1065 - 1067
  • [2] Study on interpretability of artificial neural network models for dynamic load identification
    Yang, Fengfan
    Luo, Yajun
    Du, Longfei
    Zhang, Yahong
    Xie, Shilin
    MEASUREMENT, 2025, 251
  • [3] The Artificial Intelligence and Neural Network in Teaching
    Luo, Qun
    Yang, Jiliang
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [4] DEVELOPING THE INTERPRETABILITY OF DEEP ARTIFICIAL NEURAL NETWORK ON APPLICATION PROBLEMS
    Yang, Sheng-An
    Yang, Meng-Han
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), 2019, : 1 - 6
  • [5] Artificial intelligence, emotion and neuroscience
    Mira, J
    ARBOR-CIENCIA PENSAMIENTO Y CULTURA, 1999, 162 (640) : 473 - 506
  • [6] Network model with internal complexity bridges artificial intelligence and neuroscience
    He, Linxuan
    Xu, Yunhui
    He, Weihua
    Lin, Yihan
    Tian, Yang
    Wu, Yujie
    Wang, Wenhui
    Zhang, Ziyang
    Han, Junwei
    Tian, Yonghong
    Xu, Bo
    Li, Guoqi
    NATURE COMPUTATIONAL SCIENCE, 2024, 4 (08): : 584 - 599
  • [7] On Interpretability of Artificial Neural Networks: A Survey
    Fan, Feng-Lei
    Xiong, Jinjun
    Li, Mengzhou
    Wang, Ge
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2021, 5 (06) : 741 - 760
  • [8] NEURAL NETWORK APPLICATIONS IN ARTIFICIAL-INTELLIGENCE
    DEBOLLIVIER, M
    FOGELMANSOULIE, F
    CONNECTIONISM IN PERSPECTIVE, 1989, : 485 - 497
  • [9] Artificial General Intelligence and Classical Neural Network
    Wang, Pei
    2006 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, 2006, : 130 - 135
  • [10] On the Interpretability of Artificial Intelligence in Radiology: Challenges and Opportunities
    Reyes, Mauricio
    Meier, Raphael
    Pereira, Sergio
    Silva, Carlos A.
    Dahlweid, Fried-Michael
    Von Tengg-Kobligk, Hendrik
    Summers, Ronald M.
    Wiest, Roland
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2020, 2 (03)