Automatic Music Genre Classification in Small and Ethnic Datasets

被引:0
|
作者
Tavares, Tiago Fernandes [1 ]
Foleiss, Juliano Henrique [1 ]
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn, Campinas, Brazil
来源
基金
巴西圣保罗研究基金会;
关键词
Computational ethnomusicology; Automatic music genre classification; Music information retrieval; FEATURE-SELECTION;
D O I
10.1007/978-3-030-01692-0_3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Automatic music genre classification commonly relies on a large amount of well-recorded data for model fitting. These conditions are frequently not met in ethnic music collections due to low media availability and ill recording environments. In this paper, we propose an automatic genre classification technique especially designed for small, noisy datasets. The proposed technique uses handcrafted features and a votebased aggregation process. Its performance was evaluated over a Brazilian ethnic music dataset, showing that using the proposed technique produces higher F1 measures than using traditional data augmentation methods and state-of-the-art, Deep Learning-based methods. Therefore, our method can be used in automatic classification processes for small datasets, which can be helpful in the organization of ethnic music collections.
引用
收藏
页码:35 / 48
页数:14
相关论文
共 50 条
  • [1] Automatic genre classification of music content
    Scaringella, N
    Zoia, G
    Mlynek, D
    IEEE SIGNAL PROCESSING MAGAZINE, 2006, 23 (02) : 133 - 141
  • [2] Inter genre similarity modeling for automatic music genre classification
    Bagci, Ulas
    Erzin, Engin
    2006 IEEE 14TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS, VOLS 1 AND 2, 2006, : 639 - +
  • [3] Feature Selection in Automatic Music Genre Classification
    Silla, Carlos N., Jr.
    Koerich, Alessandro L.
    Kaestner, Celso A. A.
    ISM: 2008 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA, 2008, : 39 - +
  • [4] Texture selection for automatic music genre classification
    Foleis, Juliano Henrique
    Tavares, Tiago Fernandes
    APPLIED SOFT COMPUTING, 2020, 89
  • [5] Automatic Music Genre Classification Based on CRNN
    Cheng, Yu-Huei
    Chang, Pang-Ching
    Nguyen, Duc-Man
    Kuo, Che-Nan
    ENGINEERING LETTERS, 2021, 29 (01) : 312 - 316
  • [6] A robust music genre classification approach for global and regional music datasets evaluation
    de Sousa, Jefferson Martins
    Pereira, Eanes Torres
    Veloso, Luciana Ribeiro
    2016 IEEE INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2016, : 109 - 113
  • [7] Deep Belief Networks for Automatic Music Genre Classification
    Yang, Xiaohong
    Chen, Qingcai
    Zhou, Shusen
    Wang, Xiaolong
    12TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2011 (INTERSPEECH 2011), VOLS 1-5, 2011, : 2444 - 2447
  • [8] A machine learning approach to automatic music genre classification
    Silla, Carlos N.
    Koerich, Alessandro L.
    Kaestner, Celso A. A.
    Journal of the Brazilian Computer Society, 2008, 14 (03) : 7 - 18
  • [9] A Novel Automatic Hierachical Approach to Music Genre Classification
    Ariyaratne, Hasitha B.
    Zhang, Dengsheng
    2012 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS (ICMEW), 2012, : 564 - 569
  • [10] Automatic music genre classification using ensemble of classifiers
    Silla, Carlos N., Jr.
    Kaestner, Celso A. A.
    Koerich, Alessandro L.
    2007 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-8, 2007, : 3336 - +