The s process in rotating low-mass AGB stars Nucleosynthesis calculations in models matching asteroseismic constraints

被引:16
|
作者
den Hartogh, J. W. [1 ,2 ]
Hirschi, R. [2 ,3 ]
Lugaro, M. [1 ,4 ]
Doherty, C. L. [1 ,4 ]
Battino, U. [5 ]
Herwig, F. [6 ,7 ]
Pignatari, M. [1 ,7 ,8 ]
Eggenberger, P. [9 ]
机构
[1] MTA CSFK, Konkoly Observ, Konkoly Thege Miklos Ut 15-17, H-1121 Budapest, Hungary
[2] Keele Univ, Lennard Jones Labs, Astrophys Grp, Keele ST5 5BG, Staffs, England
[3] Univ Tokyo, Kavli Inst Phys & Math Universe WPI, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan
[4] Monash Univ, Monash Ctr Astrophys MoCA, Sch Phys & Astron, Clayton, Vic 3800, Australia
[5] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3FD, Midlothian, Scotland
[6] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 5C2, Canada
[7] Michigan State Univ, JINA CEE, E Lansing, MI 48823 USA
[8] Univ Hull, EA Milne Ctr Astrophys, Dept Phys & Math, Kingston Upon Hull HU6 7RX, N Humberside, England
[9] Univ Geneva, Observ Geneve, 51 Ch Maillettes, CH-1290 Sauverny, Switzerland
基金
欧洲研究理事会;
关键词
stars: rotation; stars: evolution; stars: AGB and post-AGB; ANGULAR-MOMENTUM TRANSPORT; GIANT BRANCH STARS; STELLAR EVOLUTION; DIFFUSION; ELEMENTS;
D O I
10.1051/0004-6361/201935476
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Aims. We investigate the s-process during the AGB phase of stellar models whose cores are enforced to rotate at rates consistent with asteroseismology observations of their progenitors and successors. Methods. We calculated new 2M(circle dot), Z = 0.01 models, rotating at 0, 125, and 250 km s(-1) at the start of main sequence. An artificial, additional viscosity was added to enhance the transport of angular momentum in order to reduce the core rotation rates to be in agreement with asteroseismology observations. We compared rotation rates of our models with observed rotation rates during the MS up to the end of core He burning, and the white dwarf phase. Results. We present nucleosynthesis calculations for these rotating AGB models that were enforced to match the asteroseismic constraints on rotation rates of MS, RGB, He-burning, and WD stars. In particular, we calculated one model that matches the upper limit of observed rotation rates of core He-burning stars and we also included a model that rotates one order of magnitude faster than the upper limit of the observations. The s-process production in both of these models is comparable to that of non-rotating models. Conclusions. Slowing down the core rotation rate in stars to match the above mentioned asteroseismic constraints reduces the rotationally induced mixing processes to the point that they have no effect on the s-process nucleosynthesis. This result is independent of the initial rotation rate of the stellar evolution model. However, there are uncertainties remaining in the treatment of rotation in stellar evolution, which need to be reduced in order to confirm our conclusions, including the physical nature of our approach to reduce the core rotation rates of our models, and magnetic processes.
引用
收藏
页数:10
相关论文
共 50 条
  • [2] Correlativity of nucleosynthesis in low-mass AGB stars
    刘永新
    张波
    彭秋和
    ScienceinChina,SerA., 1996, Ser.A.1996 (10) : 1112 - 1120
  • [3] Correlativity of nucleosynthesis in low-mass AGB stars
    刘永新
    张波
    彭秋和
    Science China Mathematics, 1996, (10) : 1112 - 1120
  • [4] Correlativity of nucleosynthesis in low-mass AGB stars
    Liu, YX
    Zhang, B
    Peng, QH
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 1996, 39 (10): : 1112 - 1120
  • [5] Nucleosynthesis in low-mass, low-metallicity AGB stars
    Iwamoto, N
    Kajino, T
    Mathews, GJ
    Fujimoto, MY
    NUCLEAR PHYSICS A, 2003, 719 : 57C - 60C
  • [6] A new model for s-process nucleosynthesis in low-mass, low-metallicity AGB stars
    Iwamoto, N
    Mathews, GJ
    Fujimoto, MY
    Kajino, T
    Aoki, W
    NUCLEAR PHYSICS A, 2003, 718 : 193C - 196C
  • [7] Evolution of rotating AGB stars and the s-process nucleosynthesis
    Siess, L
    Goriely, S
    Langer, N
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, 2003, 20 (04): : 371 - 377
  • [8] Low-mass AGB stellar models for 0.003 ≤ Z ≤ 0.02:: Basic formulae for nucleosynthesis calculations
    Straniero, O
    Domínguez, I
    Cristallo, S
    Gallino, R
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, 2003, 20 (04): : 389 - 392
  • [9] CONSTRAINTS OF THE PHYSICS OF LOW-MASS AGB STARS FROM CH AND CEMP STARS
    Cristallo, S.
    Karinkuzhi, D.
    Goswami, A.
    Piersanti, L.
    Gobrecht, D.
    ASTROPHYSICAL JOURNAL, 2016, 833 (02):
  • [10] Constraints on AGB models from s-process nucleosynthesis
    Cristallo, S.
    Straniero, O.
    Gallino, R.
    WHY GALAXIES CARE ABOUT AGB STARS: THEIR IMPORTANCE AS ACTORS AND PROBES, 2007, 378 : 119 - 120