Congruences for the class numbers of real cyclic sextic number fields

被引:0
|
作者
Tong, L [1 ]
机构
[1] Tsing Hua Univ, Dept Appl Math, Beijing 100084, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY | 1999年 / 42卷 / 10期
关键词
real cyclic sextic number field; class number; p-adic L-function;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K-6 be a real cyclic sextic number field, acid K-2, K-3 its quadratic and cubic subfield. Let h(L) denote the ideal class number of field L. Seven congruences for h(-) = h(K-6)/(h(K-2)h( K-3)) are obtained. In particular, when the conductor f(6) of K-6 is a prime p, Ch(-) = Bp-1/6 B5(p-1)/6 (mod p), where C is an explicitly given constant, and B-n is the Bernoulli number. These results on real cyclic sextic fields are an extension of the results on quadratic and cyclic quartic fields.
引用
收藏
页码:1009 / 1018
页数:10
相关论文
共 50 条