On the increase of computational algorithm efficiency for elasto-plastic shell analysis

被引:8
|
作者
Soric, J
Montag, U
Kratzig, WB
机构
[1] Institut für Statik und Dynamik, Ruhr-Universität Bochum
[2] Fac. of Mech. Eng. and Nav. Arch., University of Zagreb
关键词
consistent tangent modulus; finite element analysis; elasto-plastic behaviour; integration algorithm; shell structures; tangent matrices;
D O I
10.1108/02644409710157631
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Presents a robust and unconditionally stable return-mapping algorithm based on the discrete counterpart of the principle of maximum plastic dissipation. Develops the explicit expression for the consistent elastoplastic tangent modulus. All expressions are derived via tensor formulation showing the advantage over the classical matrix notation. The integration algorithm is implemented in the formulation of the four-node isoparametric assumed-strain finite-rotation shell element employing the Mindlin-Reissner-type shell model. By applying the layered model, plastic zones can be displayed through the shell thickness. Material non-linearity described by the von Mises yield criterion and isotropic hardening is combined with a geometrically non-linear response assuming finite rotations. Numerical examples illustrate the efficiency of the present formulation in conjunction with the standard Newton iteration approach, in which no line search procedures are required. Demonstrates the excellent performance of the algorithm for large time respective load steps.
引用
收藏
页码:75 / &
页数:24
相关论文
共 50 条
  • [1] On the increase of computational algorithm efficiency for elasto-plastic shell analysis
    Institut für Statik und Dynamik, Ruhr-Universität Bochum, Germany
    不详
    Eng Comput (Swansea Wales), 1 (75-97):
  • [2] On more efficient computational algorithms for elasto-plastic shell analysis
    Montag, U
    COMPUTATIONAL PLASTICITY: FUNDAMENTALS AND APPLICATIONS, PTS 1 AND 2, 1997, : 1935 - 1942
  • [3] Consistent linearization in elasto-plastic shell analysis
    Univ of Stuttgart, Germany
    Eng Comput (Swansea Wales), 1988, 4 (289-299):
  • [4] ELASTO-PLASTIC ANALYSIS OF RC SHELL STRUCTURES.
    Ueda, Masatoshi
    Seya, Hitoshi
    Kei, Takahiro
    1600,
  • [5] LEBESGUE MEASURE IN AN ELASTO-PLASTIC SHELL
    Thakur, Pankaj
    Sethi, Monika
    Singh, H. P.
    STRUCTURAL INTEGRITY AND LIFE-INTEGRITET I VEK KONSTRUKCIJA, 2019, 19 (02): : 115 - 119
  • [6] Elasto-plastic limit analysis of RC circular cylindrical shell
    Park, KG
    STRUCTURAL ENGINEERING AND MECHANICS, VOLS 1 AND 2, 1999, : 1073 - 1078
  • [7] Computational homogenization of elasto-plastic porous metals
    Fritzen, Felix
    Forest, Samuel
    Boehlke, Thomas
    Kondo, Djimedo
    Kanit, Toufik
    INTERNATIONAL JOURNAL OF PLASTICITY, 2012, 29 : 102 - 119
  • [8] Elasto-plastic analysis of frames
    Rahman, A.F. Abdel
    Elkatt, M.T.
    Metwally, M.
    Al-Doubai, F.A.
    AEJ - Alexandria Engineering Journal, 1996, 35 (02):
  • [9] Multiscale model and algorithm for elasto-plastic analysis of composite materials
    State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
    Guti Lexue Xuebao, 2007, 1 (7-12):
  • [10] A new multiscale computational method for elasto-plastic analysis of heterogeneous materials
    Zhang, H. W.
    Wu, J. K.
    Lv, J.
    COMPUTATIONAL MECHANICS, 2012, 49 (02) : 149 - 169