Anisotropic visible photoluminescence from thermally annealed few-layer black phosphorus

被引:14
|
作者
Zhao, Chuan [1 ,2 ]
Sekhar, M. Chandra [1 ,2 ]
Lu, Wei [1 ,2 ]
Zhang, Chenglong [1 ,2 ]
Lai, Jiawei [1 ,2 ]
Jia, Shuang [1 ,2 ]
Sun, Dong [1 ,2 ]
机构
[1] Peking Univ, Sch Phys, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[2] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
black phosphorus; thermal annealing; optical anisotropy; photoluminescence; ELECTRIC-FIELD; SEMICONDUCTOR;
D O I
10.1088/1361-6528/aab98e
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Black phosphorus, a two-dimensional material, with high carrier mobility, tunable direct bandgap and anisotropic electronic properties has attracted enormous research interest towards potential application in electronic, optoelectronic and optomechanical devices. The bandgap of BP is thickness dependent, ranging from 0.3 eV for bulk to 1.3 eV for monolayer, while lacking in the visible region, a widely used optical regime for practical optoelectronic applications. In this work, photoluminescence (PL) centered at 605 nm is observed from the thermally annealed BP with thickness <= 20 nm. This higher energy PL is most likely the consequence of the formation of higher bandgap phosphorene oxides and suboxides on the surface BP layers as a result of the enhanced rate of oxidation. Moreover, the polarization-resolved PL measurements show that the emitted light is anisotropic when the excitation polarization is along the armchair direction. However, if excited along zigzag direction, the PL is nearly isotropic. Our findings suggest that the thermal annealing of BP can be used as a convenient route to fill the visible gap of the BP-based optoelectronic and optomechanical devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Preparation of Few-layer Black Phosphorus with Enhanced Photoluminescence and Stability
    Li, Dongying
    Yu, Yueyang
    Ning, Cun-Zheng
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [2] Biaxial hyperbolic metamaterials using anisotropic few-layer black phosphorus
    Song, Xianglian
    Liu, Zizhuo
    Xiang, Yuanjiang
    Aydin, Koray
    OPTICS EXPRESS, 2018, 26 (05): : 5469 - 5477
  • [3] Few-layer black phosphorus nanoparticles
    Sofer, Zdenek
    Bousa, Daniel
    Luxa, Jan
    Mazanek, Vlastimil
    Pumera, Martin
    CHEMICAL COMMUNICATIONS, 2016, 52 (08) : 1563 - 1566
  • [4] Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus
    Vy Tran
    Soklaski, Ryan
    Liang, Yufeng
    Yang, Li
    PHYSICAL REVIEW B, 2014, 89 (23)
  • [5] Deriving phosphorus atomic chains from few-layer black phosphorus
    Zhangru Xiao
    Jingsi Qiao
    Wanglin Lu
    Guojun Ye
    Xianhui Chen
    Ze Zhang
    Wei Ji
    Jixue Li
    Chuanhong Jin
    Nano Research, 2017, 10 : 2519 - 2526
  • [6] Deriving phosphorus atomic chains from few-layer black phosphorus
    Xiao, Zhangru
    Qiao, Jingsi
    Lu, Wanglin
    Ye, Guojun
    Chen, Xianhui
    Zhang, Ze
    Ji, Wei
    Li, Jixue
    Jin, Chuanhong
    NANO RESEARCH, 2017, 10 (07) : 2519 - 2526
  • [7] Anisotropic Quantum Well Electro-Optics in Few-Layer Black Phosphorus
    Sherrott, Michelle C.
    Whitney, William S.
    Jariwala, Deep
    Biswas, Souvik
    Went, Cora M.
    Wong, Joeson
    Rossman, George R.
    Atwater, Harry A.
    NANO LETTERS, 2019, 19 (01) : 269 - 276
  • [8] Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus
    Luo, Zhe
    Maassen, Jesse
    Deng, Yexin
    Du, Yuchen
    Garrelts, Richard P.
    Lundstrom, Mark S.
    Ye, Peide D.
    Xu, Xianfan
    NATURE COMMUNICATIONS, 2015, 6
  • [9] Lossy Mode Resonance Sensors Based on Anisotropic Few-Layer Black Phosphorus
    Shen, Yanting
    Zhu, Qifeng
    Chen, Zhuo
    Wu, Jiawei
    Chen, Binghuang
    Dai, Enwen
    Pan, Weiqing
    NANOMATERIALS, 2024, 14 (09)
  • [10] Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus
    Zhe Luo
    Jesse Maassen
    Yexin Deng
    Yuchen Du
    Richard P. Garrelts
    Mark S Lundstrom
    Peide D. Ye
    Xianfan Xu
    Nature Communications, 6