Herscovici's conjecture on C2n x G

被引:1
|
作者
Lourdusamy, A. [1 ]
Mathivanan, T. [1 ]
机构
[1] St Xaviers Coll Autonomous, Dept Math, Palayankottai 627002, India
关键词
Pebbling number; 2t-pebbling property; t-pebbling conjecture; Herscovici's conjecture; cycle graph; PEBBLING CONJECTURE; PRODUCTS; PROPERTY; NUMBER;
D O I
10.1142/S1793830920500718
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The t-pebbling number, f(t)(G), of a connected graph C, is the smallest positive integer such that from every placement of f(t)(G) pebbles, t pebbles can be moved to any specified target vertex by a sequence of pebbling moves, each move taking two pebbles off a vertex and placing one on an adjacent vertex. A graph G satisfies the 2t-pebbling property if 2t pebbles can be moved to any specified vertex when the total starting number of pebbles is 2f(t)(G) - q + 1, where q is the number of vertices with at least one pebble. We show that the cycle C-2n satisfies the 2t-pebbling property. Herscovici conjectured that for any connected graphs G and H, f(st)(G x H) <= f(s )(G) f(t) (H). We prove Herscovici's conjecture is true, when G is an even cycle and for variety of graphs H which satisfy the 2t-pebbling property.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Partial difference sets in C2n x C2n
    Malandro, Martin E.
    Smith, Ken W.
    DISCRETE MATHEMATICS, 2020, 343 (04)
  • [2] All extensions of C2 by C2n x C2n are good for the Morava K-theory
    Bakuradze, Malkhaz
    HIROSHIMA MATHEMATICAL JOURNAL, 2020, 50 (01) : 1 - 15
  • [3] Herscovici's conjecture on products of shadow graphs of paths
    Lourdusamy, A.
    Nellainayaki, S. Saratha
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2021, 36 (04) : 261 - 265
  • [4] A note on the Diophantine equation x2 + qm=c2n
    Deng, Mou-Jie
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2015, 91 (02) : 15 - 18
  • [5] Herscovici's Conjecture on the Product of the Thorn Graphs of the Complete Graphs
    Hao D.-L.
    Gao Z.-T.
    Yin J.-H.
    Gao, Z.-T. (gaozetu@hainu.edu.cn), 1600, Springer Science and Business Media Deutschland GmbH (02): : 263 - 269
  • [6] Vibrational dynamics and spectroscopy of water at porous g-C3N4 and C2N surfaces
    Ojha, Deepak
    Penschke, Christopher
    Saalfrank, Peter
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (14) : 11084 - 11093
  • [7] RADAR AND OPTICAL MEASUREMENTS OF C2N
    GOOD, RE
    WATKINS, BJ
    QUESADA, AF
    BROWN, JH
    LORIOT, GB
    APPLIED OPTICS, 1982, 21 (18): : 3373 - 3376
  • [8] The Tait conjecture in #g(S1 x S2)
    Carrega, Alessio
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2018, 27 (01)
  • [9] On the algebraization problem for Webs of codimension n in C2n
    Henaut, A
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1998, 31 (01): : 131 - 143
  • [10] 如何证明C2n~n是偶数?
    王芝平
    中学数学, 2010, (21) : 31 - 31