Fast optimization algorithm on Riemannian manifolds and its application in low-rank learning

被引:5
|
作者
Chen, Haoran [1 ]
Sun, Yanfeng [1 ]
Gao, Junbin [2 ]
Hu, Yongli [1 ]
Yin, Baocai [3 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
[2] Univ Sydney, Business Sch, Discipline Business Analyt, Sydney, NSW 2006, Australia
[3] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116024, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Fast optimization algorithm; Riemannian manifolds; Low-rank matrix variety; Low-rank representation; Subspace pursuit; Augmented Lagrange method; Clustering;
D O I
10.1016/j.neucom.2018.02.058
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper proposes a first-order fast optimization algorithm on Riemannian manifolds (FOA) to address the problem of speeding up optimization algorithms for a class of composite functions on Riemannian manifolds. The theoretical analysis for FOA shows that the algorithm achieves the optimal rate of convergence for function values sequence. The experiments on the matrix completion task show that FOA has better performance than other existing first-order optimization methods on Riemannian manifolds. A subspace pursuit method (SP-RPRG(ALM)) based on FOA is also proposed to solve the low-rank representation model with the augmented Lagrange method (ALM) on the low-rank matrix variety. Experimental results on synthetic data and public databases are presented to demonstrate that both FOA and SP-RPRG (ALM) can achieve superior performance in terms of faster convergence and higher accuracy. We have made the experimental code public at https://github.com/Haoran2014. (c) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:59 / 70
页数:12
相关论文
共 50 条
  • [1] Low-rank tensor completion by Riemannian optimization
    Daniel Kressner
    Michael Steinlechner
    Bart Vandereycken
    BIT Numerical Mathematics, 2014, 54 : 447 - 468
  • [2] Low-rank tensor completion by Riemannian optimization
    Kressner, Daniel
    Steinlechner, Michael
    Vandereycken, Bart
    BIT NUMERICAL MATHEMATICS, 2014, 54 (02) : 447 - 468
  • [3] LOW-RANK MATRIX COMPLETION BY RIEMANNIAN OPTIMIZATION
    Vandereycken, Bart
    SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (02) : 1214 - 1236
  • [4] AUTOMATIC DIFFERENTIATION FOR RIEMANNIAN OPTIMIZATION ON LOW-RANK MATRIX AND TENSOR-TRAIN MANIFOLDS
    NOVIKOV, A. L. E. X. A. N. D. E. R.
    RAKHUBA, M. A. X. I. M.
    OSELEDETS, I. V. A. N.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (02): : A843 - A869
  • [5] Generalized Low-Rank Plus Sparse Tensor Estimation by Fast Riemannian Optimization
    Cai, Jian-Feng
    Li, Jingyang
    Xia, Dong
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (544) : 2588 - 2604
  • [6] A Riemannian rank-adaptive method for low-rank optimization
    Zhou, Guifang
    Huang, Wen
    Gallivan, Kyle A.
    Van Dooren, Paul
    Absil, Pierre-Antoine
    NEUROCOMPUTING, 2016, 192 : 72 - 80
  • [7] Solving PhaseLift by Low-rank Riemannian Optimization Methods
    Huang, Wen
    Gallivan, Kyle A.
    Zhang, Xiangxiong
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 : 1125 - 1134
  • [8] Riemannian Optimization with Subspace Tracking for Low-rank Recovery
    Li, Qian
    Niu, Wenjia
    Li, Gang
    Tan, Jianlong
    Xiong, Gang
    Guo, Li
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 3280 - 3287
  • [9] ROBUST LOW-RANK MATRIX COMPLETION BY RIEMANNIAN OPTIMIZATION
    Cambier, Leopold
    Absil, P-A.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05): : S440 - S460
  • [10] Fixed-rank matrix factorizations and Riemannian low-rank optimization
    Bamdev Mishra
    Gilles Meyer
    Silvère Bonnabel
    Rodolphe Sepulchre
    Computational Statistics, 2014, 29 : 591 - 621