ParadisEO-MO: from fitness landscape analysis to efficient local search algorithms

被引:28
|
作者
Humeau, J. [1 ]
Liefooghe, A. [2 ,3 ]
Talbi, E-G [2 ,3 ]
Verel, S. [2 ,4 ]
机构
[1] Ecole Mines Douai, Dept IA, F-59508 Douai, France
[2] Inria Lille Nord Europe, DOLPHIN Res Team, F-59650 Villeneuve Dascq, France
[3] Univ Lille 1, UMR CNRS 8022, Lab LIFL, F-59655 Villeneuve Dascq, France
[4] Univ Nice Sophia Antipolis, UMR CNRS 6070, Lab I3S, F-06903 Sophia Antipolis, France
关键词
Local search; Metaheuristic; Fitness landscapes; Conceptual unified model; Algorithm design and analysis; Software framework; TRAVELING SALESMAN PROBLEM; GLOBAL OPTIMIZATION; FRAMEWORK; PARALLEL; EVOLUTION; MODEL;
D O I
10.1007/s10732-013-9228-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a general-purpose software framework dedicated to the design, the analysis and the implementation of local search metaheuristics: ParadisEO-MO. A substantial number of single solution-based local search metaheuristics has been proposed so far, and an attempt of unifying existing approaches is here presented. Based on a fine-grained decomposition, a conceptual model is proposed and is validated by regarding a number of state-of-the-art methodologies as simple variants of the same structure. This model is then incorporated into the ParadisEO-MO software framework. This framework has proven its efficiency and high flexibility by enabling the resolution of many academic and real-world optimization problems from science and industry.
引用
收藏
页码:881 / 915
页数:35
相关论文
共 50 条
  • [1] ParadisEO-MO: from fitness landscape analysis to efficient local search algorithms
    J. Humeau
    A. Liefooghe
    E. -G. Talbi
    S. Verel
    Journal of Heuristics, 2013, 19 : 881 - 915
  • [2] Towards ParadisEO-MO-GPU: A Framework for GPU-Based Local Search Metaheuristics
    Melab, N.
    Luong, T. -V.
    Boufaras, K.
    Talbi, E. -G.
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2011, PT I, 2011, 6691 : 401 - 408
  • [3] ParadisEO-MO-GPU: a Framework for Parallel GPU-based Local Search Metaheuristics
    Melab, Nouredine
    The Van Luong
    Boufaras, Karima
    Talbi, El-Ghazali
    GECCO'13: PROCEEDINGS OF THE 2013 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2013, : 1189 - 1196
  • [4] Local search heuristics:: Fitness cloud versus fitness landscape
    Philippe, C
    Sébastien, V
    Manuel, C
    ECAI 2004: 16TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, 110 : 973 - 974
  • [5] Covariance Local Search for Memetic Frameworks: A Fitness Landscape Analysis Approach
    Neri, Ferrante
    Zhou, Yuyang
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [6] Local landscape patterns for fitness landscape analysis
    Shirakawa, Shinichi (shirakawa@it.aoyama.ac.jp), 1600, Springer Verlag (8886):
  • [7] Local Landscape Patterns for Fitness Landscape Analysis
    Shirakawa, Shinichi
    Nagao, Tomoharu
    SIMULATED EVOLUTION AND LEARNING (SEAL 2014), 2014, 8886 : 467 - 478
  • [8] Local Fitness Landscape Exploration Based Genetic Algorithms
    Dubey, Rahul
    Hickinbotham, Simon
    Price, Mark
    Tyrrell, Andy
    IEEE ACCESS, 2023, 11 : 3324 - 3337
  • [9] Fitness Landscape Analysis of Genetic Programming Search Spaces with Local Optima Networks
    He, Yifan
    Neri, Ferrante
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 2056 - 2063
  • [10] Efficient algorithms for local alignment search
    Rajasekaran, S
    Nick, H
    Pardalos, PM
    Sahni, S
    Shaw, G
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2001, 5 (01) : 117 - 124