Time asynchronous relative dimension in space method for multi-scale problems in fluid dynamics

被引:7
|
作者
Markesteijn, A. P. [1 ]
Karabasov, S. A. [1 ]
机构
[1] Univ London, Sch Engn & Mat Sci, London E1 4NS, England
基金
英国工程与自然科学研究理事会;
关键词
Fluctuating hydrodynamics; Multiscale; Space-time transformation; High-resolution computational methods; LATTICE-BOLTZMANN; INTEGRATION; SIMULATION; SCHEMES;
D O I
10.1016/j.jcp.2013.10.035
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A novel computational method is presented for solving fluid dynamics equations in the multi-scale framework when the system size is an important parameter of the governing equations. The method (TARDIS) is based on a concurrent transformation of the governing equations in space and time and solving the transformed equations on a uniform Cartesian grid with the corresponding causality conditions at the grid interfaces. For implementation in the framework of TARDIS, the second-order CABARET scheme of Karabasov and Goloviznin [1] is selected for it provides a good combination of numerical accuracy, computational efficiency and simplicity of realisation. Numerical examples are first provided for several isothermal gas dynamics test problems and then for modelling of molecular fluctuations inside a microscopic flow channel and ultrasound wave propagation through a nano-scale region of molecular fluctuations. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:137 / 164
页数:28
相关论文
共 50 条
  • [1] A Method to Determine the Dimension of Long-Time Dynamics in Multi-Scale Systems
    S. Handrock-Meyer
    L.V. Kalachev
    K.R. Schneider
    Journal of Mathematical Chemistry, 2001, 30 : 133 - 160
  • [2] A method to determine the dimension of long-time dynamics in multi-scale systems
    Handrock-Meyer, S
    Kalachev, LV
    Schneider, KR
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2001, 30 (02) : 133 - 160
  • [3] An asynchronous scheme with local time stepping for multi-scale transport problems: Application to gas discharges
    Unfer, Thomas
    Boeuf, Jean-Pierre
    Rogier, Francois
    Thivet, Frederic
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (02) : 898 - 918
  • [4] Bridging multi-scale method for localization problems
    Kadowaki, H
    Liu, WK
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (30-32) : 3267 - 3302
  • [5] Multi-scale approaches in bubble column fluid dynamics
    Besagni, Giorgio
    Nedeltchev, Stoyan
    Ziegenhein, Thomas
    Fletcher, David F.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2022, 183 : 134 - 135
  • [6] Asymptotic adaptive methods for multi-scale problems in fluid mechanics
    R. Klein
    N. Botta
    T. Schneider
    C.D. Munz
    S. Roller
    A. Meister
    L. Hoffmann
    T. Sonar
    Journal of Engineering Mathematics, 2001, 39 : 261 - 343
  • [7] Asymptotic adaptive methods for multi-scale problems in fluid mechanics
    Klein, R
    Botta, N
    Schneider, T
    Munz, CD
    Roller, S
    Meister, A
    Hoffmann, L
    Sonar, T
    JOURNAL OF ENGINEERING MATHEMATICS, 2001, 39 (1-4) : 261 - 343
  • [8] Multi-scale time-stepping in molecular dynamics
    Maggs, A. C.
    EPL, 2017, 118 (02)
  • [9] The Multi-scale Method for Solving Nonlinear Time Space Fractional Partial Differential Equations
    Hossein Aminikhah
    Mahdieh Tahmasebi
    Mahmoud Mohammadi Roozbahani
    IEEE/CAAJournalofAutomaticaSinica, 2019, 6 (01) : 299 - 306
  • [10] The Multi-scale Method for Solving Nonlinear Time Space Fractional Partial Differential Equations
    Aminikhah, Hossein
    Tahmasebi, Mahdieh
    Roozbahani, Mahmoud Mohammadi
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (01) : 299 - 306