Design and Simulation of the Bifacial III-V-Nanowire-on-Si Solar Cell

被引:1
|
作者
Fedorenko, Anastasiia [1 ]
Baboli, Mohadeseh A. [1 ]
Mohseni, Persian K. [1 ]
Hubbard, Seth M. [1 ]
机构
[1] Rochester Inst Technol, NanoPower Res Labs, Microsyst Engn, 156 Lomb Mem Dr, Rochester, NY 14623 USA
基金
美国国家科学基金会;
关键词
D O I
10.1557/adv.2019.127
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Rigorous coupled wave analysis (RCWA) simulation was used to model the absorption in periodic arrays of GaAs0.73P0.27 nanowires (NWs) on Si substrates dependent upon the diameter (D), length (L), and spacing (center-to-center distance, or pitch, P) of the NWs. Based on this study, two resonant arrangements for a top NW array sub-cell having the highest limiting short-circuit current densities (J(sc)) were found to be close to D = 150 nm, P = 250 nm and D = 300 nm, P = 500 nm, both featuring the same packing density of 0.28. Even though a configuration with thinner NWs exhibited the highest J(sc) = 19.46 mA/cm(2), the array with D = 350 nm and P = 500 nm provided current matching with the underlying Si sub-cell with J(sc) = 18.59 mA/cm(2). Addition of a rear-side In0.81Ga0.19As nanowire array with D = 800 nm and P = 1000 nm was found to be suitable for current matching with the front NW sub-cell and middle Si. However, with thinner and sparser In0.81Ga0.19As NWs with D = 700 nm and P = 1000 nm, the J(sc) of the bottom sub-cell was increased from 17.35 mA/cm(2) to 18.76 mA/cm(2) using a planar metallic back surface reflector, thus achieving a current matching with the top and middle cells.
引用
收藏
页码:929 / 936
页数:8
相关论文
共 50 条
  • [1] Design and Simulation of the Bifacial III-V-Nanowire-on-Si Solar Cell
    Anastasiia Fedorenko
    Mohadeseh A. Baboli
    Parsian K. Mohseni
    Seth M. Hubbard
    MRS Advances, 2019, 4 : 929 - 936
  • [2] Design High-Efficiency III–V Nanowire/Si Two-Junction Solar Cell
    Y Wang
    Y Zhang
    D Zhang
    S He
    X Li
    Nanoscale Research Letters, 2015, 10
  • [3] Design High-Efficiency III-V Nanowire/Si Two-Junction Solar Cell
    Wang, Y.
    Zhang, Y.
    Zhang, D.
    He, S.
    Li, X.
    NANOSCALE RESEARCH LETTERS, 2015, 10
  • [4] Optical analysis of a III-V-nanowire-array-on-Si dual junction solar cell
    Chen, Yang
    Hoehn, Oliver
    Tucher, Nico
    Pistol, Mats-Erik
    Anttu, Nicklas
    OPTICS EXPRESS, 2017, 25 (16): : A665 - A679
  • [5] Opto-Electrical Simulation of III-V Nanowire Based Tandem Solar Cells on Si
    Maryasin, Vladimir
    Rafhay, Quentin
    Bucci, Davide
    Michallon, Jerome
    Kaminski-Cachopo, Anne
    SILICONPV 2018: THE 8TH INTERNATIONAL CONFERENCE ON CRYSTALLINE SILICON PHOTOVOLTAICS, 2018, 1999
  • [6] Theoretical conversion efficiency of a two-junction III-V nanowire on Si solar cell
    LaPierre, R. R.
    JOURNAL OF APPLIED PHYSICS, 2011, 110 (01)
  • [7] DESIGN AND GROWTH OF III-V NANOWIRE SOLAR CELL ARRAYS ON LOW COST SUBSTRATES
    Gu, Anjia
    Huo, Yijie
    Hu, Shu
    Sarmiento, Tomas
    Pickett, Evan
    Liang, Dong
    Li, Shuang
    Lin, Angie
    Thombare, Shruti
    Yu, Zongfu
    Fan, Shanhui
    McIntyre, Paul
    Cui, Yi
    Harris, James
    35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 2010,
  • [8] III-V nanowire solar cells
    LaPierre, R. R.
    2011 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE AND EXHIBITION (ACP), 2012,
  • [9] III-V nanowire solar cells
    LaPierre, R. R.
    DISPLAY, SOLID-STATE LIGHTING, PHOTOVOLTAICS, AND OPTOELECTRONICS IN ENERGY III, 2011, 8312
  • [10] n-Si bifacial concentrator solar cell
    Untila, G. G.
    Kost, T. N.
    Chebotareva, A. B.
    Zaks, M. B.
    Sitnikov, A. M.
    Solodukha, O. I.
    Shvarts, M. Z.
    SEMICONDUCTORS, 2012, 46 (09) : 1194 - 1200