Solitary wave solutions to a class of Whitham-Boussinesq systems

被引:11
|
作者
Nilsson, Dag [1 ]
Wang, Yuexun [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
来源
关键词
Whitham-type equations; Dispersive equations; Solitary wave; CONDITIONAL ENERGETIC STABILITY; SURFACE-WAVES; WATER-WAVES; EXISTENCE; EQUATIONS; MODEL;
D O I
10.1007/s00033-019-1116-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we study solitary wave solutions of a class of Whitham-Boussinesq systems which include the bidirectional Whitham system as a special example. The travelling wave version of the evolution system can be reduced to a single evolution equation, similar to a class of equations studied by Ehrnstrom et al. (Nonlinearity 25:2903-2936, 2012). In that paper, the authors prove the existence of solitary wave solutions using a constrained minimization argument adapted to noncoercive functionals, developed by Buffoni (Arch Ration Mech Anal 173:25-68, 2004), Groves and Wahlen (J Math Fluid Mech 13:593-627, 2011), together with the concentration-compactness principle.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Solitary wave solutions of a Whitham-Boussinesq system
    Dinvay, E.
    Nilsson, D.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 60
  • [2] Solitary wave solutions to a class of Whitham–Boussinesq systems
    Dag Nilsson
    Yuexun Wang
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [3] A Whitham-Boussinesq long-wave model for variable topography
    Vargas-Magana, R. M.
    Panayotaros, P.
    WAVE MOTION, 2016, 65 : 156 - 174
  • [4] Long time well-posedness of Whitham-Boussinesq systems
    Paulsen, Martin Oen
    NONLINEARITY, 2022, 35 (12) : 6284 - 6348
  • [5] On solitary-wave solutions of Boussinesq/Boussinesq systems for internal waves
    Dougalis, Vassilios A.
    Duran, Angel
    Saridaki, Leetha
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 428
  • [6] Well-Posedness for a Whitham-Boussinesq System with Surface Tension
    Dinvay, Evgueni
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2020, 23 (02)
  • [7] On well-posedness of a dispersive system of the Whitham-Boussinesq type
    Dinvay, Evgueni
    APPLIED MATHEMATICS LETTERS, 2019, 88 : 13 - 20
  • [8] WELL-POSEDNESS FOR A DISPERSIVE SYSTEM OF THE WHITHAM-BOUSSINESQ TYPE
    Dinvay, E.
    Selberg, S.
    Tesfahun, A.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (03) : 2353 - 2382
  • [9] Implicit solitary wave solutions for a class of nonlinear dispersive Boussinesq equation
    Jiang Bo
    Han Xiu-Jing
    Bi Qin-Sheng
    ACTA PHYSICA SINICA, 2010, 59 (12) : 8343 - 8347
  • [10] On the existence and stability of solitary-wave solutions to a class of evolution equations of Whitham type
    Ehrnstrom, Mats
    Groves, Mark D.
    Wahlen, Erik
    NONLINEARITY, 2012, 25 (10) : 2903 - 2936