Code generation from declarative models of robotics solvers

被引:0
|
作者
Frigerio, Marco [1 ]
Scioni, Enea [1 ]
Pazderski, Pawel Piotr [1 ]
Bruyninckx, Herman [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Dept Mech Engn, Leuven, Belgium
[2] TU E Eindhoven, Dept Mech Engn, Eindhoven, Netherlands
基金
欧盟地平线“2020”;
关键词
D O I
10.1109/IRC.2019.00066
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This short paper describes a development methodology addressing the limitations of traditional robot kinematics and dynamics software libraries. Specifically, the implementation choices which hinder the integration of the libraries within user code based on different assumptions; for example, choices about the mathematical formalism or the digital data types. Code generation based on declarative and semantically unambiguous specification is proposed as a more flexible development approach, which allows to configure the generated API and the concrete implementation choices. The paper also introduces a prototype tool that we developed to investigate our research hypothesis, and discusses some of the current challenges.
引用
收藏
页码:369 / 372
页数:4
相关论文
共 50 条
  • [1] Automatic code generation for actuator interfacing from a declarative specification
    Jung, E
    Kapoor, C
    Batory, D
    2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vols 1-4, 2005, : 3207 - 3212
  • [2] Automatic Generation of Optimized Process Models from Declarative Specifications
    Mrasek, Richard
    Muelle, Jutta
    Boehm, Klemens
    ADVANCED INFORMATION SYSTEMS ENGINEERING, CAISE 2015, 2015, 9097 : 382 - 397
  • [3] Code generation from UML models
    Frohner, Ákos
    Porkoláb, Zoltán
    Varga, László
    Periodica Polytechnica Electrical Engineering, 2000, 44 (02): : 141 - 157
  • [4] Analyzing Declarative Deployment Code with Large Language Models
    Lanciano, Giacomo
    Stein, Manuel
    Hilt, Volker
    Cucinotta, Tommaso
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND SERVICES SCIENCE, CLOSER 2023, 2023, : 289 - 296
  • [5] Code generation approaches for parallel geometric multigrid solvers
    Koster, Harald
    Heisig, Marco
    Kohl, Nils
    Kuckuk, Sebastian
    Bauer, Martin
    Rude, Ulrich
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2020, 28 (03): : 123 - 152
  • [6] SymForce: Symbolic Computation and Code Generation for Robotics
    Martiros, Hayk
    Miller, Aaron
    Bucki, Nathan
    Solliday, Bradley
    Kennedy, Ryan
    Zhu, Jack
    Dang, Tung
    Pattison, Dominic
    Zheng, Harrison
    Tomic, Teo
    Henry, Peter
    Cross, Gareth
    VanderMey, Josiah
    Sun, Alvin
    Wang, Samuel
    Holtz, Kristen
    ROBOTICS: SCIENCE AND SYSTEM XVIII, 2022,
  • [7] SymForce: Symbolic Computation and Code Generation for Robotics
    Martiros, Hayk
    Miller, Aaron
    Bucki, Nathan
    Solliday, Bradley
    Kennedy, Ryan
    Zhu, Jack
    Dang, Tung
    Pattison, Dominic
    Zheng, Harrison
    Tomic, Teo
    Henry, Peter
    Cross, Gareth
    Vander Mey, Josiah
    Sun, Alvin
    Wang, Samuel
    Holtz, Kristen
    Robotics: Science and Systems, 2022,
  • [8] Pareto-Optimal Trace Generation from Declarative Process Models
    Diaz, Juan F.
    Lopez, Hugo A.
    Quesada, Luis
    Rosero, Juan C.
    BUSINESS PROCESS MANAGEMENT WORKSHOPS, BPM 2023, 2024, 492 : 314 - 325
  • [9] Using declarative mappings for automatic code generation from SDL and ASN.1
    Mansurov, N
    Ragozin, A
    SDL'99: THE NEXT MILLENNIUM, 1999, : 275 - 290
  • [10] SystemC code generation from UML models
    Baresi, L
    Bruschi, F
    Di Nitto, E
    Sciuto, D
    SYSTEM SPECIFICATION AND DESIGN LANGUAGES: BEST OF FDL '02, 2003, : 161 - 171