Enhanced chemical durability of polymer electrolyte membrane fuel cells by crown ether grafted carbon nanotube

被引:7
|
作者
Oh, Keun-Hwan [1 ,2 ]
Goo, Youngmo [2 ]
Kim, Myounghwan [2 ]
Park, Jiyoung [2 ]
Nam, Kwan Woo [3 ]
Kim, Heejin [4 ]
机构
[1] Korea Res Inst Chem Technol KRICT, Energy Mat Res Ctr, Daejeon 34114, South Korea
[2] Korea Automot Technol Inst KATECH, Hydrogen Fuel Cell R&D Ctr, 303 Pungse Ro, Cheonan Si, Chungnam, South Korea
[3] Ewha Womans Univ, Div Chem Engn & Mat Sci, Seoul 03760, South Korea
[4] Korea Basic Sci Inst, Div Analyt Sci, 169-148 Gwahak Ro, Daejeon 34133, South Korea
关键词
Cerium ion; Crown ether; Carbon nanotube; Radical scavenger; Polymer electrolyte membrane fuel cell; PROTON-EXCHANGE MEMBRANE; DEGRADATION MECHANISMS; THERMAL-DEGRADATION; HYDROXYL RADICALS; CATALYST LAYER; CERIUM OXIDE; STABILITY; CHEMISTRY; BEHAVIOR; NAFION;
D O I
10.1016/j.jallcom.2022.167227
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Low chemical stability of membrane-electrode assembly (MEA) remains a major obstacle to commerciali-zation of polymer electrolyte membrane fuel cells (PEMFCs) for fuel cell electric vehicles (FCEVs). In this study, we doubly anchored cerium-ion in the catalyst layer by forming a complex with the 15-crown-5 -ether and additionally grafting to the multiwall carbon nanotube (Ce/CRE-graft-CNT) as a long-lasting ra-dical scavenger. To confirm the effect of Ce/CRE-graft-CNT on chemical durability, the binding energy be-tween the cerium-ion and crown ether was identified with DFT calculations. The incorporation of Ce/CRE-graft-CNT into catalyst layer decreases decay rate of open circuit voltage (OCV) by 4 times from 2.13 to 0.56 mV h-1 for 210 h operation. The performance retention of the Ce/CRE-graft-CNT (70.8 %) at 0.6 V is also higher than that of the Ce/CRE-blend-CNT (44.8 %). The results indicate that the doubly anchored Ce/CRE-graft-CNT has a more retention capability as a radical scavenger. Therefore, a tightly bounded cerium-ion/ crown ether complex with CNT can provide a strategy to improve the chemical durability of MEAs. (c) 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Prediction of Chemical Acceleration Durability Time of Polymer Membrane in Polymer Electrolyte Membrane Fuel Cells
    Oh, Sohyeong
    Yoo, Donggeun
    Jung, Sunggi
    Jeong, Jihong
    Park, Kwonpil
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2023, 61 (01): : 26 - 31
  • [2] Reducing the Test Time for Chemical/Mechanical Durability of Polymer Electrolyte Membrane Fuel Cells
    Oh, Sohyeong
    Yoo, Donggeun
    Myeonghwan, Kim
    Jiyong, Park
    Yeongjin, Choi
    Park, Kwonpil
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2023, 61 (04): : 517 - 522
  • [3] Grafted polymer electrolyte membrane for direct methanol fuel cells
    Shen, M
    Roy, S
    Kuhlmann, JW
    Scott, K
    Lovell, K
    Horsfall, JA
    JOURNAL OF MEMBRANE SCIENCE, 2005, 251 (1-2) : 121 - 130
  • [4] Enhanced physical stability and chemical durability of sulfonated poly(arylene ether sulfone) composite membranes having antioxidant grafted graphene oxide for polymer electrolyte membrane fuel cell applications
    Kim, Kihyun
    Bae, Jungmoon
    Lim, Mm-Young
    Heo, Pilwon
    Choi, So-Won
    Kwon, Heock-Hoi
    Lee, Jong-Chan
    JOURNAL OF MEMBRANE SCIENCE, 2017, 525 : 125 - 134
  • [5] Numerical Investigation of Mechanical Durability in Polymer Electrolyte Membrane Fuel Cells
    Kusoglu, Ahmet
    Santare, Michael H.
    Karlsson, Anette M.
    Cleghorn, Simon
    Johnson, William B.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (05) : B705 - B713
  • [6] Durability of Polymer Electrolyte Membrane Fuel Cells Operated at Subfreezing Temperatures
    Macauley, Natalia
    Lujan, Roger W.
    Spernjak, Dusan
    Hussey, Daniel S.
    Jacobson, David L.
    More, Karren
    Borup, Rodney L.
    Mukundana, Rangachary
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (13) : F1317 - F1329
  • [7] Electrochemical Durability Investigation of Pt/TiO2 Nanotube Catalysts for Polymer Electrolyte Membrane Fuel Cells
    Lim, Dong-Ha
    Lee, Woo-Jin
    Macy, Nathan L.
    Smyrl, William H.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2009, 12 (09) : B123 - B125
  • [8] Multiwall Carbon Nanotube-Based Microporous Layers for Polymer Electrolyte Membrane Fuel Cells
    Lee, J.
    Banerjee, R.
    George, M. G.
    Muirhead, D.
    Shrestha, P.
    Liu, H.
    Ge, N.
    Chevalier, S.
    Bazylak, A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (12) : F1149 - F1157
  • [9] A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells
    Zhou, Tianchi
    Shao, Rong
    Chen, Song
    He, Xuemei
    Qiao, Jinli
    Zhang, Jiujun
    JOURNAL OF POWER SOURCES, 2015, 293 : 946 - 975
  • [10] Polypropylene-grafted multi-walled carbon nanotube reinforced polypropylene composite bipolar plates in polymer electrolyte membrane fuel cells
    Hsiao, Min-Chien
    Liao, Shu-Hang
    Lin, Yu-Feng
    Weng, Cheng-Chih
    Tsai, Han Min
    Ma, Chen-Chi M.
    Lee, Shie-Heng
    Yen, Ming-Yu
    Liu, Po-I
    ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (02) : 543 - 550