Families of Newton-like methods with fourth-order convergence

被引:33
|
作者
Jain, Divya [1 ]
机构
[1] Guru Gobind Singh Indraprastha Univ, Univ Sch Basic & Appl Sci, Sect 16 C, Delhi 110075, India
关键词
Newton method; secant method; order of convergence; trapezoidal rule; fourth-order convergence; inverse function; 65H05; 3RD-ORDER CONVERGENCE; NONLINEAR EQUATIONS; CUBIC CONVERGENCE; VARIANT; ROOTS;
D O I
10.1080/00207160.2012.746677
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Families of fourth-order methods are presented which are obtained by existing third-order methods applied in succession with the secant method.
引用
收藏
页码:1072 / 1082
页数:11
相关论文
共 50 条
  • [1] Modified Optimal Class of Newton-Like Fourth-Order Methods for Multiple Roots
    Kansal, Munish
    Behl, Ramandeep
    Mahnashi, Mohammed Ali A.
    Mallawi, Fouad Othman
    SYMMETRY-BASEL, 2019, 11 (04):
  • [2] HYBRID NEWTON-LIKE METHODS WITH HIGH ORDER OF CONVERGENCE
    Argyros, Ioannis K.
    George, Santhosh
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2019, 18 (04): : 387 - 393
  • [3] ON THE CONVERGENCE OF INEXACT NEWTON-LIKE METHODS
    ARGYROS, IK
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1993, 43 (1-2): : 79 - 85
  • [4] ON THE CONVERGENCE OF A CLASS OF NEWTON-LIKE METHODS
    POTRA, FA
    LECTURE NOTES IN MATHEMATICS, 1982, 953 : 125 - 137
  • [5] Accelerated convergence in Newton-like methods
    Várterész M.
    Journal of Mathematical Sciences, 2001, 103 (4) : 529 - 532
  • [6] A unified framework for the design of efficient fourth order Newton-like methods
    Ouarit, Mostafa
    Souissi, Ali
    Ziani, Mohammed
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2015, 53 (06): : 46 - 57
  • [7] Newton-like methods with increasing order of convergence and their convergence analysis in Banach space
    Sharma J.R.
    Argyros I.K.
    Kumar D.
    SeMA Journal, 2018, 75 (3) : 545 - 561
  • [8] LOCAL CONVERGENCE OF DIFFERENCE NEWTON-LIKE METHODS
    YPMA, TJ
    MATHEMATICS OF COMPUTATION, 1983, 41 (164) : 527 - 536
  • [9] ON THE MONOTONE CONVERGENCE OF GENERAL NEWTON-LIKE METHODS
    ARGYROS, IK
    SZIDAROVSZKY, F
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1992, 45 (03) : 489 - 502
  • [10] Local convergence for some high convergence order Newton-like methods with frozen derivatives
    Argyros I.K.
    George S.
    SeMA Journal, 2015, 70 (1) : 47 - 59