FuseNet: 3D Object Detection Network with Fused Information for Lidar Point Clouds

被引:2
|
作者
Liu, Biao [1 ]
Tian, Bihao [1 ]
Wang, Hengyang [1 ]
Qiao, Junchao [1 ]
Wang, Zhi [2 ]
机构
[1] Beijing Jiaotong Univ, Sch Elect Engn, Beijing 100044, Peoples R China
[2] Beijing Jiaotong Univ, Sch Sci, Beijing 100044, Peoples R China
基金
北京市自然科学基金;
关键词
Computer vision; Point cloud; Neural networks; Object detection; Voxelization;
D O I
10.1007/s11063-022-10848-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D object detection from lidar point cloud has an important role in the environment sensing system of autonomous driving vehicles. In this paper, we propose two modules for object detection works by more detailed voxel initial information extraction and full fusion of context information. Additionally, we extract density information as the initial feature of the voxels and fully confuse the coordinate and density information with a point-based method to reduce the loss of original data caused by voxelization. Second, we extract the voxel features with a backbone neural network based on 3D sparse convolution. We propose a Cross-connected Region Proposal Network to integrate multiscale and multidepth regional features and to obtain high-quality 3D proposal regions. In addition, we extend the target generation strategy in the anchor-based 3D object detection algorithm, which stabilizes the network performance for multiple objections. Our modules can be flexibly applied to state-of-the-art models and effectively improves the network performance, which proves the effectiveness of the modules that we proposed.
引用
收藏
页码:5063 / 5078
页数:16
相关论文
共 50 条
  • [1] FuseNet: 3D Object Detection Network with Fused Information for Lidar Point Clouds
    Biao Liu
    Bihao Tian
    Hengyang Wang
    Junchao Qiao
    Zhi Wang
    Neural Processing Letters, 2022, 54 : 5063 - 5078
  • [2] EFNet: enhancing feature information for 3D object detection in LiDAR point clouds
    Meng, Xin
    Zhou, Yuan
    Du, Kaiyue
    Ma, Jun
    Meng, Jin
    Kumar, Aakash
    Lv, Jiahang
    Kim, Jonghyuk
    Wang, Shifeng
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2024, 41 (04) : 739 - 748
  • [3] PillarNeXt: Rethinking Network Designs for 3D Object Detection in LiDAR Point Clouds
    Li, Jinyu
    Luo, Chenxu
    Yang, Xiaodong
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 17567 - 17576
  • [4] 3D MSSD: A multilayer spatial structure 3D object detection network for mobile LiDAR point clouds
    Wang, Zongyue
    Xia, Qiming
    Du, Jing
    Huang, Shangfeng
    Su, Jinhe
    Marcato Junior, Jose
    Li, Jonathan
    Cai, Guorong
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 102
  • [5] Optimisation of the PointPillars network for 3D object detection in point clouds
    Stanisz, Joanna
    Lis, Konrad
    Kryjak, Tomasz
    Gorgon, Marek
    2020 SIGNAL PROCESSING - ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS (SPA), 2020, : 122 - 127
  • [6] Learning Deformable Network for 3D Object Detection on Point Clouds
    Zhang, Wanyi
    Fu, Xiuhua
    Li, Wei
    MOBILE INFORMATION SYSTEMS, 2021, 2021
  • [7] Enhanced Vote Network for 3D Object Detection in Point Clouds
    Zhong, Min
    Zeng, Gang
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 6624 - 6631
  • [8] Relation Graph Network for 3D Object Detection in Point Clouds
    Feng, Mingtao
    Gilani, Syed Zulqarnain
    Wang, Yaonan
    Zhang, Liang
    Mian, Ajmal
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 92 - 107
  • [9] A Hierarchical Graph Network for 3D Object Detection on Point Clouds
    Chen, Jintai
    Lei, Biwen
    Song, Qingyu
    Ying, Haochao
    Chen, Danny Z.
    Wu, Jian
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 389 - 398
  • [10] SIEV-Net: A Structure-Information Enhanced Voxel Network for 3D Object Detection From LiDAR Point Clouds
    Yu, Chuanbo
    Lei, Jianjun
    Peng, Bo
    Shen, Haifeng
    Huang, Qingming
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60