Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor

被引:1051
|
作者
Cushing, Scott K. [1 ,2 ]
Li, Jiangtian [1 ]
Meng, Fanke [1 ]
Senty, Tess R. [2 ]
Suri, Savan [1 ]
Zhi, Mingjia [1 ]
Li, Ming [1 ]
Bristow, Alan D. [2 ]
Wu, Nianqiang [1 ]
机构
[1] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA
[2] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA
基金
美国国家科学基金会;
关键词
VISIBLE-LIGHT; SOLAR-CELLS; SILVER NANOSTRUCTURES; DIPOLE APPROXIMATION; TITANIUM-DIOXIDE; CHARGE-CARRIERS; PARTICLE-SIZE; NANOPARTICLES; GOLD; SURFACE;
D O I
10.1021/ja305603t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasmonic metal nanostructures have been incorporated into semiconductors to enhance the solar-light harvesting and the energy-conversion efficiency. So far the mechanism of energy transfer from the plasmonic metal to semiconductors remains unclear. Herein the underlying plasmonic energy-transfer mechanism is unambiguously determined in Au@SiO2@Cu2O sandwich nanostructures by transient-absorption and photocatalysis action spectrum measurement. The gold core converts the energy of incident photons into localized surface plasmon resonance oscillations and transfers the plasmonic energy to the Cu2O semiconductor shell via resonant energy transfer (RET). RET generates electron hole pairs in the semiconductor by the dipole dipole interaction between the plasmonic metal (donor) and semiconductor (acceptor), which greatly enhances the visible-light photocatalytic activity as compared to the semiconductor alone. RET from a plasmonic metal to a semiconductor is a viable and efficient mechanism that can be used to guide the design of photocatalysts, photovoltaics, and other optoelectronic devices.
引用
收藏
页码:15033 / 15041
页数:9
相关论文
共 50 条
  • [1] Energy transfer in plasmonic photocatalytic composites
    Ma, Xiang-Chao
    Dai, Ying
    Yu, Lin
    Huang, Bai-Biao
    LIGHT-SCIENCE & APPLICATIONS, 2016, 5 : e16017 - e16017
  • [2] Energy transfer in plasmonic photocatalytic composites
    Xiang-Chao Ma
    Ying Dai
    Lin Yu
    Bai-Biao Huang
    Light: Science & Applications, 2016, 5 : e16017 - e16017
  • [3] Integration of a plasmonic semiconductor with a metal-organic framework: a case of Ag/AgCl@ZIF-8 with enhanced visible light photocatalytic activity
    Gao, Shu-Tao
    Liu, Wei-Hua
    Shang, Ning-Zhao
    Feng, Cheng
    Wu, Qiu-Hua
    Wang, Zhi
    Wang, Chun
    RSC ADVANCES, 2014, 4 (106): : 61736 - 61742
  • [4] Surface plasmon enhanced energy transfer in metal-semiconductor hybrid nanostructures
    Zhao, Xinhong
    Wang, Peng
    Li, Baojun
    NANOSCALE, 2011, 3 (08) : 3056 - 3059
  • [5] Plasmonic gratings for enhanced THz emission from metal-semiconductor thin films
    Ramanandan, Gopika K. P.
    Adam, Aurele J. L.
    Planken, Paul C. M.
    2013 38TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2013,
  • [6] Enhancing hot-electron generation and transfer from metal to semiconductor in a plasmonic absorber
    Li, Hongdong
    Ali, Wajid
    Wang, Zuochao
    Mideksa, Megersa F.
    Wang, Fei
    Wang, Xiaoli
    Wang, Lei
    Tang, Zhiyong
    NANO ENERGY, 2019, 63
  • [7] Plasmonic Nanoslit Array Enhanced Metal-Semiconductor-Metal Optical Detectors
    Eryilmaz, Sukru Burc
    Tidin, Onur
    Okyay, Ali K.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2012, 24 (07) : 548 - 550
  • [8] Enhanced photocatalytic reactions via plasmonic metal-semiconductor heterostructures combing with solid-liquid-gas interfaces
    Wang, Shan-Jiang
    Zhang, Xiao-Yang
    Su, Dan
    Yan, Xi
    Zhou, Huan-Li
    Xue, Xiao-Mei
    Wang, Yun-Fan
    Zhang, Tong
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2022, 306
  • [9] Enhancement of Resonant Energy Transfer Due to an Evanescent Wave from the Metal
    Poudel, Amrit
    Chen, Xin
    Ratner, Mark A.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (06): : 955 - 960
  • [10] Resonant energy transfer under the influence of the evanescent field from the metal
    Poudel, Amrit
    Chen, Xin
    Ratner, Mark A.
    JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (24):