Numerical investigation on flow and thermal performance of supercritical CO2 in horizontal cylindrically concaved tubes

被引:41
|
作者
Li, Yong [1 ,2 ]
Sun, Feng [2 ]
Xie, Gongnan [1 ,3 ]
Sunden, Bengt [4 ]
Qin, Jiang [5 ]
机构
[1] Northwestern Polytech Univ, Sch Marine Sci & Technol, POB 24, Xian 710072, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Mech Engn, POB 552, Xian 710072, Shaanxi, Peoples R China
[3] Northwestern Polytech Univ Shenzhen, Res & Dev Inst, Shenzhen 518057, Guangdong, Peoples R China
[4] Lund Univ, Dept Energy Sci, POB 118, SE-22100 Lund, Sweden
[5] Harbin Inst Technol, Key Lab Aerosp Thermophys, Minist Ind & Informat Technol, Sch Energy Sci & Engn, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Supercritical carbon dioxide; Cylindrically concaved tubes; Heat transfer; Pressure drop; Parametrical study; HEAT-TRANSFER CHARACTERISTICS; CARBON-DIOXIDE; PRESSURE-DROP;
D O I
10.1016/j.applthermaleng.2019.03.034
中图分类号
O414.1 [热力学];
学科分类号
摘要
To improve the overall heat transfer of supercritical carbon dioxide (SCO2) in a horizontal circular tube, this study proposes a novel kind of tube with cylindrically concaves and fillets on the circular surface. Several tubes are designed accordingly to investigate various parameters like theta (sectorial angle of concaves), r(2) (radius of concaves), r(3) (radius of fillets) and n (number of concaves) to observe their effects on the thermal performance. The heat transfer and pressure drop characteristics of SCO2 in these tubes are conducted by applying a verified turbulence model at an operation pressure of 8.0 MPa, an inlet temperature of 323.15 K, a mass flow rate of 0.005652 kg/s and a heat power rate of 565.488 W. It is found that the heat transfer coefficient of all the designed cases are improved due to the secondary flow and the maximum value of the h/h(4)/(f/f(4)) is 1.134 compared with that of the standard case 4, while the friction factors are not increased but in fact even lower without raising the vortex pairs. Finally, the heat transfer coefficient at the vicinity of the pseudo-critical point is studied and it is noted that the heat transfer is also enhanced at this region.
引用
收藏
页码:655 / 668
页数:14
相关论文
共 50 条
  • [1] Numerical investigation on flow and thermal performance of supercritical CO2 in a horizontal ribbed tube
    Mao, Shang
    Zhou, Tao
    Wei, Dong
    Liu, Wenbin
    Xue, Chunhui
    JOURNAL OF SUPERCRITICAL FLUIDS, 2022, 187
  • [2] Numerical Study on the Effect of Diameter on Supercritical CO2 Heat Transfer and Flow in Horizontal Tubes
    He, Ya-Ling (yalinghe@mail.xjtu.edu.cn), 2018, Science Press (39):
  • [3] Numerical investigation of heat transfer in supercritical CO2 and water turbulent flow in circular tubes
    Bovard, Samaneh
    Abdi, Mehdi
    Nikou, Mohammad Reza Khosravi
    Daryasafar, Amin
    JOURNAL OF SUPERCRITICAL FLUIDS, 2017, 119 : 88 - 103
  • [4] Numerical investigation on cooling heat transfer and flow characteristic of supercritical CO2 in spirally fluted tubes
    Yu, Zhongyang
    Tao, Leren
    Huang, Lihao
    Wang, Dong
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 163
  • [5] Computational investigation on heat transfer of supercritical CO2 in horizontal U-tubes
    Huang, Yu
    Duan, Lunbo
    Liu, Daoyin
    Wang, Yueming
    JOURNAL OF SUPERCRITICAL FLUIDS, 2022, 188
  • [6] Thermal analysis of supercritical pressure CO2 in horizontal tubes under cooling condition
    Xiang, Mengru
    Guo, Jiangfeng
    Huai, Xiulan
    Cui, Xinying
    JOURNAL OF SUPERCRITICAL FLUIDS, 2017, 130 : 389 - 398
  • [7] Computational investigation on heat transfer of supercritical CO2 in horizontal U-tubes
    Huang, Yu
    Duan, Lunbo
    Liu, Daoyin
    Wang, Yueming
    Journal of Supercritical Fluids, 2022, 188
  • [8] Numerical analysis on flow and heat transfer of supercritical CO2 in horizontal tube
    Yan Chen-Shuai
    Xu Jin-Liang
    ACTA PHYSICA SINICA, 2020, 69 (04)
  • [9] Numerical study on cooling heat transfer of turbulent supercritical CO2 in large horizontal tubes
    Wang, Jianyong
    Guan, Zhiqiang
    Gurgenci, Hal
    Veeraragavan, Ananthanarayanan
    Kang, Xin
    Sun, Yubiao
    Hooman, Kamel
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 126 : 1002 - 1019
  • [10] Numerical investigation on thermal hydraulic performance of hybrid wavy channels in a supercritical CO2 precooler
    Lv, Yi-Gao
    Wen, Zhe-Xi
    Li, Qing
    Qiu, Yu
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 181