Number of arm selection in two-dimensional diffusion processes

被引:2
|
作者
Mendoza, C. I. [1 ]
Ramirez-Santiago, G. [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Invest & Mat, Dept Polimeros, Mexico City 04510, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Fis, Dept Quim Fis, Mexico City 01000, DF, Mexico
来源
EUROPEAN PHYSICAL JOURNAL E | 2008年 / 27卷 / 01期
关键词
D O I
10.1140/epje/i2008-10348-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We introduce an algorithm to generate two-dimensional diffusion-limited star-branched aggregates (DLSA)attaching bi-functional monomers successively to a central colloidal particle with any desired number of reactive sites. The proposed algorithm produces star-shaped aggregates that grow forever and show a power law polydispersity in the chemical length of the arms near the central colloid. More interestingly, it gives rise to a number of arm selection consisting in that only a small number of arms (around five) define the final structure at relatively large distances from the central colloid, independently of the initial number of reactive sites and the size of the central colloid. We characterize the structure of the aggregates by means of the particle-particle correlation function, analyze its scaling properties and obtain the fractal dimension.
引用
收藏
页码:31 / 35
页数:5
相关论文
共 50 条
  • [1] Number of arm selection in two-dimensional diffusion processes
    C. I. Mendoza
    G. Ramírez-Santiago
    The European Physical Journal E, 2008, 27 : 31 - 35
  • [2] Two-dimensional diffusion processes as models in lifetime studies
    Lefebvre, Mario
    Aoudia, Djilali Ait
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2012, 43 (10) : 1943 - 1949
  • [3] Dynamical processes of interstitial diffusion in a two-dimensional colloidal crystal
    Kim, Sung-Cheol
    Yu, Lichao
    Pertsinidis, Alexandros
    Ling, Xinsheng Sean
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (24) : 13220 - 13226
  • [4] Effect of the number of nanodisks in two-dimensional arrays on magnetization reversal processes
    M. E. Stebliy
    A. G. Kolesnikov
    A. V. Ognev
    A. S. Samardak
    L. A. Chebotkevich
    Physics of the Solid State, 2013, 55 : 768 - 772
  • [5] Effect of the Number of Nanodisks in Two-Dimensional Arrays on Magnetization Reversal Processes
    Stebliy, M. E.
    Kolesnikov, A. G.
    Ognev, A. V.
    Samardak, A. S.
    Chebotkevich, L. A.
    PHYSICS OF THE SOLID STATE, 2013, 55 (04) : 768 - 772
  • [6] The number of two-dimensional maxima
    Barbour, AD
    Xia, A
    ADVANCES IN APPLIED PROBABILITY, 2001, 33 (04) : 727 - 750
  • [7] The Brush Number of the Two-Dimensional
    Tan, Ta Sheng
    UTILITAS MATHEMATICA, 2017, 104 : 321 - 331
  • [8] Unbounded perturbations of two-dimensional diffusion processes with nonlocal boundary conditions
    P. L. Gurevich
    Doklady Mathematics, 2007, 76 : 891 - 895
  • [9] Unbounded perturbations of two-dimensional diffusion processes with nonlocal boundary conditions
    Gurevich, P. L.
    DOKLADY MATHEMATICS, 2007, 76 (03) : 891 - 895
  • [10] First-passage problems for degenerate two-dimensional diffusion processes
    Mario Lefebvre
    Test, 2003, 12 : 125 - 139