New universality class for the permeability problem in a percolation cluster

被引:1
|
作者
Mulet, R
Díaz, O
Herrmann, H
机构
[1] Univ Stuttgart, D-70569 Stuttgart, Germany
[2] Univ Havana, Fac Phys, IMRE, Superconduct Lab, La Habana, Cuba
来源
PHYSICA A | 1999年 / 268卷 / 1-2期
关键词
D O I
10.1016/S0378-4371(99)00051-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The maximum flow that a percolation cluster can sustain with a Gaussian distribution of individual bond capacities is calculated. We show the existence of a new universality class if the probability distribution of bond capacities has a finite value in the limit of zero capacity. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [1] PERCOLATION WITH A THRESHOLD AT ZERO - A NEW UNIVERSALITY CLASS
    TRUGMAN, SA
    WEINRIB, A
    PHYSICAL REVIEW B, 1985, 31 (05): : 2974 - 2980
  • [2] Percolation of diffusional creep: A new universality class
    Chen, Ying
    Schuh, Christopher A.
    PHYSICAL REVIEW LETTERS, 2007, 98 (03)
  • [3] HIGHER CONNECTIVITY IN RANDOM MIXTURES = THE UNIVERSALITY CLASS OF 2-CLUSTER PERCOLATION
    DUARTE, JAMS
    RUSKIN, HJ
    PHYSICA A, 1982, 111 (03): : 423 - 442
  • [4] ARE BRANCHED POLYMERS IN THE UNIVERSALITY CLASS OF PERCOLATION
    BUNDE, A
    HAVLIN, S
    PORTO, M
    PHYSICAL REVIEW LETTERS, 1995, 74 (14) : 2714 - 2716
  • [5] On the universality class of monopole percolation in scalar QED
    Fernández, LA
    Martín-Mayor, V
    PHYSICS LETTERS B, 1999, 452 (3-4) : 310 - 317
  • [6] UNIVERSALITY CLASS OF CENTRAL-FORCE PERCOLATION
    HANSEN, A
    ROUX, S
    PHYSICAL REVIEW B, 1989, 40 (01): : 749 - 752
  • [7] Scaling behavior of the directed percolation universality class
    Lübeck, S
    Willmann, RD
    NUCLEAR PHYSICS B, 2005, 718 (03) : 341 - 361
  • [8] Local persistence in the directed percolation universality class
    Fuchs, Johannes
    Schelter, Joerg
    Ginelli, Francesco
    Hinrichsen, Haye
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
  • [9] Block scaling in the directed percolation universality class
    Pruessner, Gunnar
    NEW JOURNAL OF PHYSICS, 2008, 10
  • [10] Universality class of the two-dimensional randomly distributed growing-cluster percolation model
    Melchert, O.
    PHYSICAL REVIEW E, 2013, 87 (02):