Meshless analysis of geometrically nonlinear beams

被引:0
|
作者
Xia, J. M. [1 ]
Wei, D. M. [1 ]
Jin, R. H. [1 ]
机构
[1] S China Univ Technol, Guangzhou 510640, Guangdong, Peoples R China
来源
ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4 | 2008年 / 96卷
关键词
D O I
10.1088/1742-6596/96/1/012005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The meshless method is applied to the response analysis of a geometrically nonlinear beam. The corresponding nonlinear strain operator matrix and tangent rigidity matrix are given. The computational results agree well with Holden's analytic Solution. It is found that the meshless method is more efficient for large displacement.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Vibration analysis of geometrically nonlinear spinning beams
    Hosseini, S. A. A.
    Zamanian, M.
    Shams, Sh.
    Shooshtari, A.
    MECHANISM AND MACHINE THEORY, 2014, 78 : 15 - 35
  • [2] Buckling analysis of geometrically nonlinear curved beams
    Stoykov, S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 340 : 653 - 663
  • [3] Geometrically nonlinear analysis of Reissner-Mindlin plate by meshless computation
    Department of Engineering, Queen Mary, University of London, United Kingdom
    不详
    CMES Comput. Model. Eng. Sci., 2007, 3 (177-191):
  • [4] Geometrically nonlinear analysis of Reissner-Mindlin plate by meshless computation
    Wen, P. H.
    Hon, Y. C.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2007, 21 (03): : 177 - 191
  • [5] Nonlocal geometrically nonlinear dynamic analysis of nanobeam using a meshless method
    Rad, Mohammad Hossein Ghadiri
    Shahabian, Farzad
    Hosseini, Seyed Mahmoud
    STEEL AND COMPOSITE STRUCTURES, 2019, 32 (03): : 293 - 304
  • [6] A GEOMETRICALLY NONLINEAR-ANALYSIS FOR NONHOMOGENEOUS, ANISOTROPIC BEAMS
    ATILGAN, AR
    HODGES, DH
    AIAA/ASME/ASCE/AHS/ASC 30TH STRUCTURES, STRUCTURAL DYNAMICS AND MATERIALS CONFERENCE, PTS 1-4: A COLLECTION OF TECHNICAL PAPERS, 1989, : 895 - 908
  • [7] Geometrically nonlinear analysis of functionally graded porous beams
    Akbas, Seref D.
    WIND AND STRUCTURES, 2018, 27 (01) : 59 - 70
  • [8] Geometrically Nonlinear Analysis for Elastic Beam Using Point Interpolation Meshless Method
    He, Cheng
    Wu, Xinhai
    Wang, Tao
    He, Huan
    SHOCK AND VIBRATION, 2019, 2019
  • [9] Geometrically Nonlinear Inelastic Analysis of Timoshenko Beams on Inelastic Foundation
    Kampitsis, A. E.
    Sapountzakis, E. J.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2014, 103 (06): : 367 - 409
  • [10] Geometrically nonlinear analysis of Timoshenko beams under thermomechanical loadings
    Li, SR
    Zhou, YH
    JOURNAL OF THERMAL STRESSES, 2003, 26 (09) : 861 - 872