Gas sensing characteristics of multi-wall carbon nanotubes

被引:465
|
作者
Varghese, OK
Kichambre, PD
Gong, D
Ong, KG
Dickey, EC
Grimes, CA [1 ]
机构
[1] Penn State Univ, Dept Elect Engn, Mat Res Lab 204, University Pk, PA 16802 USA
[2] Penn State Univ, Mat Res Inst, Mat Res Lab 204, University Pk, PA 16802 USA
[3] Univ Kentucky, Dept Elect & Comp Engn, Lexington, KY 40506 USA
[4] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
carbon nanotubes; gas sensor; impedance;
D O I
10.1016/S0925-4005(01)00923-6
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Impedance spectroscopy was used to study the gas sensing behavior of both capacitance and resistance based sensors employing multi-wall carbon nanotubes (MWNTs) as the active sensing element. Studies revealed the chemisorption of reducing gases upon the surface of the MWNTs. Increasing sensor impedance was observed with increasing humidity or partial pressures of ammonia, carbon monoxide, and carbon dioxide. The impedance changes are attributed to p-type conductivity in semiconducting MWNTs, and the formation of Schottky barriers between the metallic and semiconducting nanotubes. Reversible behavior is demonstrated for the MWNT sensors in response to humidity, carbon monoxide and carbon dioxide. The MWNT sensors strongly respond to ammonia behaving as dosimeters. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:32 / 41
页数:10
相关论文
共 50 条
  • [1] Flow sensing characteristics of thin film based on multi-wall carbon nanotubes
    Yunhuai, Zhang
    Jian, He
    Peng, Xian
    Yun, Gong
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (18-19): : 3473 - 3476
  • [2] Metal-decorated multi-wall carbon nanotubes for low temperature gas sensing
    Espinosa, E. H.
    Ionescu, R.
    Bittencourt, C.
    Felten, A.
    Erni, R.
    Van Tendeloo, G.
    Pireaux, J. -J.
    Llobet, E.
    THIN SOLID FILMS, 2007, 515 (23) : 8322 - 8327
  • [3] Gas and Pressure Sensors Based on Multi-Wall Carbon Nanotubes: Study of Sensing Mechanisms
    Gelamo, R. V.
    Rouxinol, F. P.
    Verissimo, C.
    Bica de Moraes, M. A.
    Moshkalev, S. A.
    SENSOR LETTERS, 2010, 8 (03) : 488 - 492
  • [4] Microwave purification of multi-wall carbon nanotubes in gas phase
    Zheng, Jia
    Bao, Rui
    Yi, Jian-hong
    Yang, Ping
    DIAMOND AND RELATED MATERIALS, 2016, 68 : 93 - 101
  • [5] Multi-Wall Carbon Nanotubes in Microwaves
    Moseenkov, S.
    Kuznetsov, V.
    Usoltseva, A.
    Mazov, I.
    Ischenko, A.
    Buryakov, T.
    Anikeeva, O.
    Romanenko, A.
    Kuzhir, P.
    Bychenok, D.
    Batrakov, K.
    Maksimenko, S.
    PROCEEDINGS OF THE 1ST WSEAS INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN NANOTECHNOLOGY, 2009, : 92 - +
  • [6] Multi-wall carbon nanotubes as a high-efficiency gas sensor
    Ahn, KS
    Kim, JH
    Lee, KN
    Kim, CO
    Hong, JP
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2004, 45 (01) : 158 - 161
  • [7] Electrochemical oxidation of multi-wall carbon nanotubes
    Moraitis, Giorgos
    Spitalsky, Zdeno
    Ravani, Fotini
    Siokou, Angeliki
    Galiotis, Costas
    CARBON, 2011, 49 (08) : 2702 - 2708
  • [8] Interference and Interaction in multi-wall carbon nanotubes
    C. Schönenberger
    A. Bachtold
    C. Strunk
    J.-P. Salvetat
    L. Forró
    Applied Physics A, 1999, 69 : 283 - 295
  • [9] Optoelectronic modulation by multi-wall carbon nanotubes
    Torres-Torres, C.
    Perea-Lopez, N.
    Martinez-Gutierrez, H.
    Trejo-Valdez, M.
    Ortiz-Lopez, J.
    Terrones, M.
    NANOTECHNOLOGY, 2013, 24 (04)
  • [10] Interference and Interaction in multi-wall carbon nanotubes
    Schönenberger, C
    Bachtold, A
    Strunk, C
    Salvetat, JP
    Forró, L
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1999, 69 (03): : 283 - 295