The Key Regulatory Roles of the PI3K/Akt Signaling Pathway in the Functionalities of Mesenchymal Stem Cells and Applications in Tissue Regeneration

被引:2
|
作者
Chen, Jiezhong [1 ,2 ,3 ]
Crawford, Ross [1 ]
Chen, Chen [2 ]
Xiao, Yin [1 ]
机构
[1] Queensland Univ Technol, Inst Hlth & Biomed Innovat, Brisbane, Qld 4059, Australia
[2] Univ Queensland, Sch Biomed Sci, St Lucia, Qld, Australia
[3] Univ Wollongong, Fac Med & Hlth Sci, Wollongong, NSW, Australia
基金
英国医学研究理事会;
关键词
MARROW STROMAL CELLS; HUMAN BONE-MARROW; HEPATOCYTE GROWTH-FACTOR; ENGINEERING CURRENT STRATEGIES; ACTIVATED PROTEIN-KINASE; HUMAN ADIPOSE-TISSUE; KAPPA-B ACTIVATION; OSTEOGENIC DIFFERENTIATION; IN-VITRO; OSTEOBLAST DIFFERENTIATION;
D O I
10.1089/ten.teb.2012.0672
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into various cell types and have been widely used in tissue engineering application. In tissue engineering, a scaffold, MSCs and growth factors are used as essential components and their interactions have been regarded to be important for regeneration of tissues. A critical problem for MSCs in tissue engineering is their low survival ability and functionality. Most MSCs are going to be apoptotic after transplantation. Therefore, increasing MSC survival ability and functionalities is the key for potential applications of MSCs. Several approaches have been studied to increase MSC tissue forming capacity including application of growth factors, overexpression of stem cell regulatory genes, and improvement of biomaterials for scaffolds. The effects of these approaches on MSCs have been associated with activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. The pathway plays central regulatory roles in MSC survival, proliferation, migration, angiogenesis, cytokine production, and differentiation. In this review, we summarize and discuss the literatures related to the roles of the PI3K/Akt pathway in the functionalities of MSCs and the involvement of the pathway in biomaterials-increased MSC functionalities. Biomaterials have been modified in their properties and surface structure and loaded with growth factors to increase MSC functionalities. Several studies demonstrated that the biomaterials-increased MSC functionalities are mediated by the activation of the PI3K/Akt pathway.
引用
收藏
页码:516 / 528
页数:13
相关论文
共 50 条
  • [1] PI3K/Akt signaling as a key regulatory pathway for chondrocyte terminal differentiation
    Kita, Keisuke
    Kimura, Tohru
    Nakamura, Norimasa
    Yoshikawa, Hideki
    Nakano, Toru
    GENES TO CELLS, 2008, 13 (08) : 839 - 850
  • [2] PI3K/Akt/mTOR signaling pathway in cancer stem cells
    Fath, Mohsen Karami
    Ebrahimi, Menooa
    Nourbakhsh, Ehsan
    Hazara, Ahmad Zia
    Mirzaei, Ali
    Shafieyari, Saba
    Salehi, Azadeh
    Hoseinzadeh, Mahsa
    Payandeh, Zahra
    Barati, Ghasem
    PATHOLOGY RESEARCH AND PRACTICE, 2022, 237
  • [3] Regulatory Roles of the PI3K/Akt Signaling Pathway in Rats with Severe Acute Pancreatitis
    Xu, Ping
    Wang, Jing
    Yang, Zhi-wen
    Lou, Xiao-li
    Chen, Cheng
    PLOS ONE, 2013, 8 (11):
  • [4] Flufenamic Acid Inhibits Adipogenic Differentiation of Mesenchymal Stem Cells by Antagonizing the PI3K/AKT Signaling Pathway
    Liu, Xuenan
    Zheng, Li
    Liu, Hao
    Zhu, Yuan
    Xia, Dandan
    Wang, Siyi
    Gu, Ranli
    Zhang, Ping
    Liu, Yunsong
    Zhou, Yongsheng
    STEM CELLS INTERNATIONAL, 2020, 2020
  • [5] PI3K/AKT Signaling Pathway Is Essential for Survival of Induced Pluripotent Stem Cells
    Hossini, Amir M.
    Quast, Annika S.
    Ploetz, Michael
    Grauel, Katharina
    Exner, Tarik
    Kuechler, Judit
    Stachelscheid, Harald
    Eberle, Juergen
    Rabien, Anja
    Makrantonaki, Evgenia
    Zouboulis, Christos C.
    PLOS ONE, 2016, 11 (05):
  • [6] The Role and Mechanism of PI3K/Akt/mTOR Signaling Pathway in Autophagy during Mesenchymal Stem Cells Directional Differentiation
    Gong, J.
    INDIAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2022, 84 : 249 - 258
  • [7] Cornuside I promoted osteogenic differentiation of bone mesenchymal stem cells through PI3K/Akt signaling pathway
    Feng Gao
    Sheng-Li Xia
    Xiu-Hui Wang
    Xiao-Xiao Zhou
    Jun Wang
    Journal of Orthopaedic Surgery and Research, 16
  • [8] Cornuside I promoted osteogenic differentiation of bone mesenchymal stem cells through PI3K/Akt signaling pathway
    Gao, Feng
    Xia, Sheng-Li
    Wang, Xiu-Hui
    Zhou, Xiao-Xiao
    Wang, Jun
    JOURNAL OF ORTHOPAEDIC SURGERY AND RESEARCH, 2021, 16 (01)
  • [9] The PI3K/Akt/mTOR signaling pathway
    Dennis, P. A.
    ANNALS OF ONCOLOGY, 2011, 22 : 19 - 19
  • [10] Targeting the PI3K/Akt/mTOR Signaling Pathway: Applications of Nanotechnology
    Serej, Forough Alemi
    Pourhassan-Moghaddam, Mohammad
    Kalan, Mohammad Ebrahimi
    Mehdipour, Ahmad
    Serej, Zeynab Aliyari
    Ebrahimi-Kalan, Abbas
    CRESCENT JOURNAL OF MEDICAL AND BIOLOGICAL SCIENCES, 2018, 5 (01): : 7 - 13