Centering, Scale Indeterminacy, and Differential Item Functioning Detection in Hierarchical Generalized Linear and Generalized Linear Mixed Models

被引:6
|
作者
Cheong, Yuk Fai [1 ]
Kamata, Akihito [2 ]
机构
[1] Emory Univ, Div Educ Studies, Atlanta, GA 30322 USA
[2] Univ Oregon, Dept Educ Methodol Policy & Leadership, Eugene, OR 97403 USA
关键词
D O I
10.1080/08957347.2013.824453
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
In this article, we discuss and illustrate two centering and anchoring options available in differential item functioning (DIF) detection studies based on the hierarchical generalized linear and generalized linear mixed modeling frameworks. We compared and contrasted the assumptions of the two options, and examined the properties of their DIF estimates with a simulation study. For reference purposes, the results were compared to those obtained from using the Mantel-Haenszel procedure as well. Finally, we discuss some implications regarding the choice of model parameterizations for DIF detection using these frameworks.
引用
收藏
页码:233 / 252
页数:20
相关论文
共 50 条
  • [1] Analysis of School Context Effects on Differential Item Functioning Using Hierarchical Generalized Linear Models
    Cheong, Yuk Fai
    INTERNATIONAL JOURNAL OF TESTING, 2006, 6 (01) : 57 - 79
  • [2] Hierarchical generalized linear models
    Lee, Y
    Nelder, JA
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1996, 58 (04): : 619 - 656
  • [3] Item analysis by the hierarchical generalized linear model
    Kamata, A
    JOURNAL OF EDUCATIONAL MEASUREMENT, 2001, 38 (01) : 79 - 93
  • [4] Modeling Multiple Item Context Effects With Generalized Linear Mixed Models
    Rose, Norman
    Nagy, Gabriel
    Nagengast, Benjamin
    Frey, Andreas
    Becker, Michael
    FRONTIERS IN PSYCHOLOGY, 2019, 10
  • [5] Modeling Item Position Effects Using Generalized Linear Mixed Models
    Weirich, Sebastian
    Hecht, Martin
    Boehme, Katrin
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2014, 38 (07) : 535 - 548
  • [6] Classification of territory risk by generalized linear and generalized linear mixed models
    Xie, Shengkun
    Gan, Chong
    JOURNAL OF MANAGEMENT ANALYTICS, 2023, 10 (02) : 223 - 246
  • [7] A generalized approach to indeterminacy in linear rational expectations models
    Bianchi, Francesco
    Nicolo, Giovanni
    QUANTITATIVE ECONOMICS, 2021, 12 (03) : 843 - 868
  • [8] Hierarchical generalized linear models - Discussion
    Engel, B
    Keen, A
    Clayton, D
    Londford, NT
    Kuba, J
    Firth, D
    Draper, D
    Atkinson, AC
    Raab, GM
    Parpia, T
    Choy, STB
    Smith, AFM
    Dale, JR
    Shephard, N
    Ball, RD
    Breslow, NE
    Ekholm, A
    Gelman, A
    Langford, IH
    Morris, CN
    Preece, DA
    Seu, PK
    Smith, RL
    Thompson, R
    Walker, SG
    Mallick, BK
    Lee, Y
    Nelder, JA
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1996, 58 (04) : 656 - 678
  • [9] Double hierarchical generalized linear models
    Lee, Y
    Nelder, JA
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2006, 55 : 139 - 167
  • [10] A regularization approach for the detection of differential item functioning in generalized partial credit models
    Gunther Schauberger
    Patrick Mair
    Behavior Research Methods, 2020, 52 : 279 - 294