机构:
Univ Jaume 1, Dept Matemat, Castellon de La Plana 12071, Spain
Univ Jaume 1, IMAC, Castellon de La Plana 12071, SpainUniv Politecn Valencia, Inst Matemat Multidisciplinar, Valencia 46022, Spain
机构:
EHU UPV, Konputazio Zientziak Eta AA Saila, Donostia San Sebastian 12071, San Sebastian, SpainUniv Politecn Valencia, Inst Matemat Multidisciplinar, Valencia 46022, Spain
We are concerned with the numerical solution obtained by splitting methods of certain parabolic partial differential equations. Splitting schemes of order higher than two with real coefficients necessarily involve negative coefficients. It has been demonstrated that this second-order barrier can be overcome by using splitting methods with complex-valued coefficients (with positive real parts). In this way, methods of orders 3 to 14 by using the Suzuki-Yoshida triple (and quadruple) jump composition procedure have been explicitly built. Here we reconsider this technique and show that it is inherently bounded to order 14 and clearly sub-optimal with respect to error constants. As an alternative, we solve directly the algebraic equations arising from the order conditions and construct methods of orders 6 and 8 that are the most accurate ones available at present time, even when low accuracies are desired. We also show that, in the general case, 14 is not an order barrier for splitting methods with complex coefficients with positive real part by building explicitly a method of order 16 as a composition of methods of order 8.
机构:
Univ Gen Sarmiento, Inst Ciencias, Juan Maria Gutierrez 1150,C1613EGA, Los Polvorines, Buenos Aires, ArgentinaUniv Gen Sarmiento, Inst Ciencias, Juan Maria Gutierrez 1150,C1613EGA, Los Polvorines, Buenos Aires, Argentina
De Leo, Mariano
Rial, Diego
论文数: 0引用数: 0
h-index: 0
机构:
Univ Buenos Aires, FCEyN, Dept Matemat, Intendente Guiraldes 2160,Ciudad Univ,Pabellon 1, Buenos Aires, DF, Argentina
IMAS CONICET, Inst Matemat Luis Santalo, Buenos Aires, DF, ArgentinaUniv Gen Sarmiento, Inst Ciencias, Juan Maria Gutierrez 1150,C1613EGA, Los Polvorines, Buenos Aires, Argentina
Rial, Diego
Sanchez de la Vega, Constanza
论文数: 0引用数: 0
h-index: 0
机构:
Univ Buenos Aires, FCEyN, Dept Matemat, Intendente Guiraldes 2160,Ciudad Univ,Pabellon 1, Buenos Aires, DF, Argentina
IMAS CONICET, Inst Matemat Luis Santalo, Buenos Aires, DF, ArgentinaUniv Gen Sarmiento, Inst Ciencias, Juan Maria Gutierrez 1150,C1613EGA, Los Polvorines, Buenos Aires, Argentina