Borel Complexity of Topological Operations on Computable Metric Spaces

被引:21
|
作者
Brattka, Vasco [1 ]
Gherardi, Guido [2 ]
机构
[1] Univ Cape Town, Dept Math & Appl Math, Lab Foundat Aspects Comp Sci, ZA-7700 Rondebosch, South Africa
[2] Univ Bologna, Dipartimento Filosofia, I-40126 Bologna, Italy
关键词
Computable analysis; effective descriptive set theory; effective Borel complexity; theory of representations; Fell topology; Effros Borel structure; CLOSED SUBSETS; SET OPERATOR; MEASURABILITY;
D O I
10.1093/logcom/exn027
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the Borel complexity of topological operations on closed subsets of computable metric spaces. The investigated operations include set theoretic operations such as union and intersection, but also typical topological operations such as the closure of the complement, the closure of the interior, the boundary and the derivative of a set. These operations are studied with respect to different computability structures on the hyperspace of closed subsets. These structures include positive or negative information on the represented closed subsets. Topologically, they correspond to the lower or upper Fell topology, respectively, and the induced computability concepts generalize the classical notions of recursively enumerable (r.e.) or co-r. e. subsets, respectively. The operations are classified with respect to effective measurability in the Borel hierarchy and it turns out that most operations can be located in the first three levels of the hierarchy, or they are not even Borel measurable at all. In some cases the effective Borel measurability depends on further properties of the underlying metric spaces, such as effective local compactness and effective local connectedness.
引用
收藏
页码:45 / 76
页数:32
相关论文
共 50 条