A Monte-Carlo based model approximation technique for linear model predictive control of nonlinear systems

被引:19
|
作者
Lambert, Romain S. C. [1 ]
Rivotti, Pedro [1 ]
Pistikopoulos, E. N. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, Ctr Proc Syst Engn, London SW7 2AZ, England
基金
欧洲研究理事会;
关键词
Model predictive control; Model order reduction; Model approximation;
D O I
10.1016/j.compchemeng.2013.03.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we present a model approximation technique based on N-step-ahead affine representations obtained via Monte-Carlo integrations. The approach enables simultaneous linearization and model order reduction of nonlinear systems in the original state space thus allowing the application of linear MPC algorithms to nonlinear systems. The methodology is detailed through its application to benchmark model examples. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:60 / 67
页数:8
相关论文
共 50 条
  • [1] Sequential Monte Carlo for Model Predictive Control
    Kantas, N.
    Maciejowski, J. M.
    Lecchini-Visintini, A.
    NONLINEAR MODEL PREDICTIVE CONTROL: TOWARDS NEW CHALLENGING APPLICATIONS, 2009, 384 : 263 - +
  • [2] Model predictive control of linear systems with nonlinear terminal control
    Chen, WH
    Hu, XB
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2004, 14 (04) : 327 - 339
  • [3] Vehicle Control with Prediction Model Based Monte-Carlo Tree Search
    Ha, Timothy
    Cho, Kyunghoon
    Cha, Geonho
    Lee, Kyungjae
    Oh, Songhwai
    2020 17TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS (UR), 2020, : 303 - 308
  • [4] MONTE-CARLO VARIATIONAL CALCULATIONS FOR MODEL NUCLEON SYSTEMS
    SCHMIDT, KE
    KALOS, MH
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (03): : 429 - 429
  • [5] Stochastic Model Predictive Control for Microgrids Based on Monte Carlo Simulations
    Sezgin, Mustafa Erdem
    Pouraltafi-Kheljan, Soheil
    Beyarslan, Mehmet
    Gol, Murat
    2022 57TH INTERNATIONAL UNIVERSITIES POWER ENGINEERING CONFERENCE (UPEC 2022): BIG DATA AND SMART GRIDS, 2022,
  • [6] Carleman approximation based quasi-analytic model predictive control for nonlinear systems
    Fang, Yizhou
    Armaou, Antonios
    AICHE JOURNAL, 2016, 62 (11) : 3915 - 3929
  • [7] Immersion-based model predictive control of constrained nonlinear systems: Polyflow approximation
    Wang, Zheming
    Jungers, Raphael M.
    2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, : 1099 - 1104
  • [8] Clustering Method for Monte Carlo Model Predictive Control
    Toda, Tatsuya
    Nakatani, Shintaro
    Date, Hisashi
    IFAC PAPERSONLINE, 2021, 54 (14): : 251 - 256
  • [9] Optimal model predictive control solution approximation using Takagi Sugeno for linear and a class of nonlinear systems
    Hamza Boumaza
    Khaled Belarbi
    International Journal of Dynamics and Control, 2022, 10 : 1265 - 1278
  • [10] Optimal model predictive control solution approximation using Takagi Sugeno for linear and a class of nonlinear systems
    Boumaza, Hamza
    Belarbi, Khaled
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2022, 10 (04) : 1265 - 1278