Fuzzy C-Means and Two Clusters' Centers Method for Generating Interval Type-2 Membership Function

被引:0
|
作者
Hasan, Mohd Hilmi [1 ]
Jaafar, Jafreezal [1 ]
Hassan, Mohd Fadzil [1 ]
机构
[1] Univ Teknol PETRONAS, Comp & Informat Sci Dept, Bandar Seri Iskandar, Perak, Malaysia
关键词
membership function; IT2 membership function; FCM; membership function from FCM; data clustering; ALGORITHMS; VALIDITY; LOGIC;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Existing works investigated the construction of fuzzy type-1 (FT1) membership function (MF). However, recent findings show that interval type-2 (IT2)-based fuzzy inference system (FIS) is found to be more accurate and precise than FT1. Hence, the research on how to generate IT2 MF from data is significant to be conducted. Besides, existing works also investigated the construction of IT2 MF using IT2 Fuzzy C-Means (FCM) method. The evident shows that the construction of IT2 MF from IT2 FCM method may not suitable for all kind of data sets. Hence, the objectives of this paper are to present a methodology for the generation of IT2 MF using general FCM (non-IT2 FCM) data clustering method and to describe the implementation of the proposed IT2 MFs in an FIS. The experiment results show that IT2 MFs have successfully been constructed by using general FCM and two clusters' centers approach.
引用
收藏
页码:627 / 632
页数:6
相关论文
共 50 条
  • [1] Enhanced interval type-2 fuzzy C-means algorithm
    Qiu, Cun-Yong
    Xiao, Jian
    Han, Lu
    Kongzhi yu Juece/Control and Decision, 2014, 29 (03): : 465 - 469
  • [2] Uncertain fuzzy clustering:: Interval type-2 fuzzy approach to C-means
    Hwang, Cheul
    Rhee, Frank Chung-Hoon
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2007, 15 (01) : 107 - 120
  • [3] Interval Type-2 Fuzzy C-Means Approach to Collaborative Clustering
    Trong Hop Dang
    Long Thanh Ngo
    Pedrycz, Witold
    2015 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2015), 2015,
  • [4] Interval Type-2 Relative Entropy Fuzzy C-Means clustering
    Zarinbal, M.
    Zarandi, M. H. Fazel
    Turksen, I. B.
    INFORMATION SCIENCES, 2014, 272 : 49 - 72
  • [5] Images Segmentation based on Interval Type-2 Fuzzy C-Means
    Assas, Ouarda
    2015 SAI INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS), 2015, : 773 - 781
  • [6] Interval Type-2 Fuzzy C-Means using Multiple Kernels
    Abhishek
    Jeph, Anubhav
    Rhee, Frank C. -H.
    2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,
  • [7] Interval Type-2 Fuzzy Possibilistic C-Means Clustering Algorithm
    Rubio, E.
    Castillo, Oscar
    Melin, Patricia
    RECENT DEVELOPMENTS AND NEW DIRECTION IN SOFT-COMPUTING FOUNDATIONS AND APPLICATIONS, 2016, 342 : 185 - 194
  • [8] Genetic Based Interval Type-2 Fuzzy C-Means Clustering
    Dzung Dinh Nguyen
    Long Thanh Ngo
    Long The Pham
    CONTEXT-AWARE SYSTEMS AND APPLICATIONS, (ICCASA 2012), 2013, 109 : 239 - 248
  • [9] Multiple Kernel Interval Type-2 Fuzzy C-Means Clustering
    Dzung Dinh Nguyen
    Long Thanh Ngo
    2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,
  • [10] Interval type-2 fuzzy C-means forecasting model for fuzzy time series
    Yin, Yue
    Sheng, Yehua
    Qin, Jiarui
    APPLIED SOFT COMPUTING, 2022, 129