Suppression of Rayleigh-Taylor turbulence by time-periodic acceleration

被引:19
|
作者
Boffetta, G. [1 ,2 ]
Magnani, M. [1 ]
Musacchio, S. [3 ]
机构
[1] Univ Torino, Dipartimento Fis, Via P Giuria 1, I-10125 Turin, Italy
[2] Univ Torino, INFN, Via P Giuria 1, I-10125 Turin, Italy
[3] Univ Cote Azur, CNRS, LJAD, F-06108 Nice, France
关键词
DYNAMIC STABILIZATION; INSTABILITY;
D O I
10.1103/PhysRevE.99.033110
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The dynamics of Rayleigh-Taylor turbulence convection in the presence of an alternating, time-periodic acceleration is studied by means of extensive direct numerical simulations of the Boussinesq equations. Within this framework, we discover a mechanism of relaminarization of turbulence: the alternating acceleration, which initially produces a growing turbulent mixing layer, at longer times suppresses turbulent fluctuation and drives the system toward an asymptotic stationary configuration. Dimensional arguments and linear stability theory are used to predict the width of the mixing layer in the asymptotic state as a function of the period of the acceleration.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Acceleration and turbulence in Rayleigh-Taylor mixing
    Sreenivasan, Katepalli R.
    Abarzhi, Snezhana I.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (2003):
  • [2] Rotating Rayleigh-Taylor turbulence
    Boffetta, G.
    Mazzino, A.
    Musacchio, S.
    PHYSICAL REVIEW FLUIDS, 2016, 1 (05):
  • [3] Phenomenology of Rayleigh-Taylor turbulence
    Chertkov, M
    PHYSICAL REVIEW LETTERS, 2003, 91 (11)
  • [4] Incompressible Rayleigh-Taylor Turbulence
    Boffetta, Guido
    Mazzino, Andrea
    ANNUAL REVIEW OF FLUID MECHANICS, VOL 49, 2017, 49 : 119 - 143
  • [5] Reactive Rayleigh-Taylor turbulence
    Chertkov, M.
    Lebedev, V.
    Vladimirova, N.
    JOURNAL OF FLUID MECHANICS, 2009, 633 : 1 - 16
  • [6] EFFECTS OF TURBULENCE ON RAYLEIGH-TAYLOR INSTABILITY
    CLAUSER, MJ
    BAKER, L
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (09): : 1189 - 1189
  • [7] Quantifying mixing of Rayleigh-Taylor turbulence
    Zhang, You-sheng
    Ni, Wei-dan
    Ruan, Yu-cang
    Xie, Han-song
    PHYSICAL REVIEW FLUIDS, 2020, 5 (10)
  • [8] Rayleigh-Taylor turbulence in two dimensions
    Celani, A
    Mazzino, A
    Vozella, L
    PHYSICAL REVIEW LETTERS, 2006, 96 (13)
  • [9] Intermittency in the miscible Rayleigh-Taylor turbulence
    Celani, Antonio
    Mazzino, Andrea
    Vozella, Lara
    ADVANCES IN TURBULENCE XI, 2007, 117 : 404 - +
  • [10] Rotational suppression of Rayleigh-Taylor instability
    Carnevale, GF
    Orlandi, P
    Zhou, Y
    Kloosterziel, RC
    JOURNAL OF FLUID MECHANICS, 2002, 457 : 181 - 190