Ion beam-mixed Ge electrodes for high capacity Li rechargeable batteries

被引:36
|
作者
Rudawski, N. G. [1 ]
Yates, B. R. [1 ]
Holzworth, M. R. [1 ]
Jones, K. S. [1 ]
Elliman, R. G. [2 ]
Volinsky, A. A. [3 ]
机构
[1] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
[2] Australian Natl Univ, Res Sch Phys & Engn, Dept Elect Mat Engn, Canberra, ACT 0200, Australia
[3] Univ S Florida, Dept Mech Engn, Tampa, FL 33620 USA
关键词
Ion beam mixing; Ion implantation; Ion beam modification; Ge; Germanium; Li ion battery anode; THIN-FILMS; ANODE MATERIAL; VOID FORMATION; GERMANIUM; ADHESION; IMPLANTATION; SYSTEMS; ENHANCEMENT; NANOWIRES; MODEL;
D O I
10.1016/j.jpowsour.2012.09.056
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ion beam modification to effect ion beam mixing without changing morphology was investigated as a means to improve the electrochemical performance of Ge thin film electrodes for rechargeable Li batteries. As a result of a minimum tenfold increase in the strength of adhesion of the Ge film to the current collector (substrate), the ion beam-mixed electrodes exhibited stable specific capacities of similar to 1500 mAh g(-1) (close to the theoretical maximum of 1623 mAh g(-1)) for galvanostatic cycling rates of 0.2C-1.6C using both single- and multi-rate testing schemes. Electron microscopy investigations showed that the ion beam-mixed electrodes transform from a flat, continuous, nonporous microstructure in the virgin state to a rough, cracked, porous microstructure as a result of electrochemical cycling, but remain in excellent electrical contact with the current collector. The results suggest that ion beam mixing could be used to produce inexpensive, high capacity conversion electrodes for rechargeable Li batteries. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:336 / 340
页数:5
相关论文
共 50 条
  • [1] Electrodes with high power and high capacity for rechargeable lithium batteries
    Kang, KS
    Meng, YS
    Bréger, J
    Grey, CP
    Ceder, G
    SCIENCE, 2006, 311 (5763) : 977 - 980
  • [2] High-Capacity Rechargeable Li/Cl2 Batteries with Graphite Positive Electrodes
    Zhu, Guanzhou
    Liang, Peng
    Huang, Cheng-Liang
    Huang, Cheng-Chia
    Li, Yuan-Yao
    Wu, Shu-Chi
    Li, Jiachen
    Wang, Feifei
    Tian, Xin
    Huang, Wei-Hsiang
    Jiang, Shi-Kai
    Hung, Wei-Hsuan
    Chen, Hui
    Lin, Meng-Chang
    Hwang, Bing-Joe
    Dai, Hongjie
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (49) : 22505 - 22513
  • [3] ANODIC BEHAVIOR OF ION BEAM-MIXED SURFACES
    MCCAFFERTY, E
    HUBLER, GK
    NATISHAN, PM
    TRZASKOMA, PP
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (8B) : C421 - C421
  • [4] MECHANISM LEADING TO IRREVERSIBLE CAPACITY LOSS IN LI ION RECHARGEABLE BATTERIES
    MATSUMURA, Y
    WANG, S
    MONDORI, J
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (09) : 2914 - 2918
  • [5] Rechargeable Oxide Ion Batteries Based on Mixed Conducting Oxide Electrodes
    Schmid, Alexander
    Krammer, Martin
    Fleig, Jurgen
    ADVANCED ENERGY MATERIALS, 2023, 13 (11)
  • [6] Photo Rechargeable Li-Ion Batteries Using Nanorod Heterostructure Electrodes
    Kumar, Amar
    Thakur, Pallavi
    Sharma, Rahul
    Puthirath, Anand B.
    Ajayan, Pulickel M.
    Narayanan, Tharangattu N.
    SMALL, 2021, 17 (51)
  • [7] Origin of Capacity Fading for Nano-grains Based Electrodes of Li Rechargeable Batteries
    J.Gaubicuer
    F.Tanguy
    P.Soudan
    V.Mauchamp
    D.Guyomard
    复旦学报(自然科学版), 2007, (05) : 683 - 683
  • [8] Binder-free Ge-three dimensional graphene electrodes for high-rate capacity Li-ion batteries
    Wang, C. D.
    Chui, Y. S.
    Li, Y.
    Chen, X. F.
    Zhang, W. J.
    APPLIED PHYSICS LETTERS, 2013, 103 (25)
  • [9] Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries
    Wang, Wei
    Kumta, Prashant N.
    JOURNAL OF POWER SOURCES, 2007, 172 (02) : 650 - 658
  • [10] A nanosized silicon thin film as high capacity anode material for Li-ion rechargeable batteries
    Guo, Hong
    Zhao, Hailei
    Yin, Chaoli
    Qiu, Weihua
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2006, 131 (1-3): : 173 - 176