Convergence of a numerical scheme for a nonlinear oblique derivative boundary value problem

被引:3
|
作者
Mehats, F [1 ]
机构
[1] Univ Toulouse 3, MIP, UMR 5640, CNRS, F-31062 Toulouse 04, France
关键词
oblique derivative boundary problem; finite difference scheme; heat equation; Burgers equation;
D O I
10.1051/m2an:2003008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present here a discretization of a nonlinear oblique derivative boundary value problem for the heat equation in dimension two. This finite difference scheme takes advantages of the structure of the boundary condition, which can be reinterpreted as a Burgers equation in the space variables. This enables to obtain an energy estimate and to prove the convergence of the scheme. We also provide some numerical simulations of this problem and a numerical study of the stability of the scheme, which appears to be in good agreement with the theory.
引用
收藏
页码:1111 / 1132
页数:22
相关论文
共 50 条
  • [1] A novel scheme for solving the oblique derivative boundary-value problem
    Macak, Marek
    Minarechova, Zuzana
    Mikula, Karol
    STUDIA GEOPHYSICA ET GEODAETICA, 2014, 58 (04) : 556 - 570
  • [2] A novel scheme for solving the oblique derivative boundary-value problem
    Marek Macák
    Zuzana Minarechová
    Karol Mikula
    Studia Geophysica et Geodaetica, 2014, 58 : 556 - 570
  • [3] Note on the Convergence of a Finite Volume Scheme Using a General Nonconforming Mesh for an Oblique Derivative Boundary Value Problem
    Bradji, Abdallah
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - METHODS AND THEORETICAL ASPECTS, 2014, 77 : 149 - 157
  • [4] SOME GENERALIZATIONS OF A BOUNDARY VALUE PROBLEM WITH OBLIQUE DERIVATIVE
    ROZENTAL, AL
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1967, 12 (02): : 329 - &
  • [5] NEW SECOND ORDER UP-WIND SCHEME FOR OBLIQUE DERIVATIVE BOUNDARY VALUE PROBLEM
    Medla, Matej
    Mikula, Karol
    PROCEEDINGS OF THE CONFERENCE ALGORITMY 2016, 2016, : 254 - 263
  • [6] A nonlinear oblique derivative boundary value problem for the heat equation - Part 1: Basic results
    Mehats, F
    Roquejoffre, JM
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1999, 16 (02): : 221 - 253
  • [7] A nonlinear oblique derivative boundary value problem for the heat equation: Analogy with the porous medium equation
    Caffarelli, LA
    Roquejoffre, JM
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2002, 19 (01): : 41 - 80
  • [8] On the convergence and convergence order of finite volume gradient schemes for oblique derivative boundary value problems
    Abdallah Bradji
    Jürgen Fuhrmann
    Computational and Applied Mathematics, 2018, 37 : 2533 - 2565
  • [9] On the convergence and convergence order of finite volume gradient schemes for oblique derivative boundary value problems
    Bradji, Abdallah
    Fuhrmann, Juergen
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03): : 2533 - 2565
  • [10] CONVERGENCE OF A LATTICE NUMERICAL METHOD FOR A BOUNDARY-VALUE PROBLEM WITH FREE BOUNDARY AND NONLINEAR NEUMANN BOUNDARY CONDITIONS
    Chernov, I. A.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2009, 35 : 40 - 56