Discontinuous properties of current-induced magnetic domain wall depinning

被引:5
|
作者
Hu, X. F. [1 ,2 ]
Wu, J. [2 ,3 ]
Niu, D. X. [1 ,2 ]
Chen, L. [4 ]
Morton, S. A. [5 ]
Scholl, A. [5 ]
Huang, Z. C. [6 ]
Zhai, Y. [6 ]
Zhang, W. [1 ]
Will, I. [1 ]
Xu, Y. B. [1 ,2 ]
Zhang, R. [2 ]
van der Laan, G. [7 ]
机构
[1] Univ York, Dept Elect, Spintron & Nanodevice Lab, York YO10 5DD, N Yorkshire, England
[2] Nanjing Univ, Sch Elect Sci & Engn, Nanjing York Int Ctr Spintron, Nanjing 210093, Jiangsu, Peoples R China
[3] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England
[4] Univ Leeds, Dept Elect, Leeds LS2 9JT, W Yorkshire, England
[5] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[6] Southeast Univ, Dept Phys, Nanjing 211189, Jiangsu, Peoples R China
[7] Magnet Spect Grp, Diamond Light Source, Didcot OX11 0DE, Oxon, England
来源
SCIENTIFIC REPORTS | 2013年 / 3卷
基金
英国工程与自然科学研究理事会;
关键词
APPLIED PHYSICS; MAGNETIC DEVICES; SPINTRONICS; FERROMAGNETISM; MOTION; DYNAMICS;
D O I
10.1038/srep03080
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The current-induced motion of magnetic domain walls (DWs) confined to nanostructures is of great interest for fundamental studies as well as for technological applications in spintronic devices. Here, we present magnetic images showing the depinning properties of pulse-current-driven domain walls in well-shaped Permalloy nanowires obtained using photoemission electron microscopy combined with x-ray magnetic circular dichroism. In the vicinity of the threshold current density (Jth = 4.2 x 10(11) A.m(-2)) for the DW motion, discontinuous DW depinning and motion have been observed as a sequence of "Barkhausen jumps". A one-dimensional analytical model with a piecewise parabolic pinning potential has been introduced to reproduce the DW hopping between two nearest neighbour sites, which reveals the dynamical nature of the current-driven DW motion in the depinning regime.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Discontinuous properties of current-induced magnetic domain wall depinning
    X. F. Hu
    J. Wu
    D. X. Niu
    L. Chen
    S. A. Morton
    A. Scholl
    Z. C. Huang
    Y. Zhai
    W. Zhang
    I. Will
    Y. B. Xu
    R. Zhang
    G. van der Laan
    Scientific Reports, 3
  • [2] Influence of Joule heating on current-induced domain wall depinning
    Moretti, Simone (simone.moretti@usal.es), 1600, American Institute of Physics Inc. (119):
  • [3] Influence of Joule heating on current-induced domain wall depinning
    Moretti, Simone
    Raposo, Victor
    Martinez, Eduardo
    JOURNAL OF APPLIED PHYSICS, 2016, 119 (21)
  • [4] Current-induced resonant depinning of a transverse magnetic domain wall in a spin valve nanostrip
    Metaxas, P. J.
    Anane, A.
    Cros, V.
    Grollier, J.
    Deranlot, C.
    Lemaitre, Y.
    Xavier, S.
    Ulysse, C.
    Faini, G.
    Petroff, F.
    Fert, A.
    APPLIED PHYSICS LETTERS, 2010, 97 (18)
  • [5] Influence of the thermal contact resistance in current-induced domain wall depinning
    Lopez, Cristina
    Ramos, Eduardo
    Munoz, Manuel
    Kar-Narayan, S.
    Mathur, N. D.
    Prieto, Jose L.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (32)
  • [6] Current-induced domain-wall depinning in curved Permalloy nanowires
    Nahrwold, Gesche
    Bocklage, Lars
    Scholtyssek, Jan M.
    Matsuyama, Toru
    Krueger, Benjamin
    Merkt, Ulrich
    Meier, Guido
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (07)
  • [7] Current-induced distortion of a magnetic domain wall
    Waintal, X
    Viret, M
    EUROPHYSICS LETTERS, 2004, 65 (03): : 427 - 433
  • [8] Current-induced zero-field domain wall depinning in cylindrical nanowires
    Julian A. Moreno
    Jurgen Kosel
    Scientific Reports, 12
  • [9] Current-induced zero-field domain wall depinning in cylindrical nanowires
    Moreno, Julian A.
    Kosel, Jurgen
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [10] CURRENT-INDUCED DOMAIN WALL CREEP IN MAGNETIC WIRES
    Ieda, J.
    Maekawa, S.
    Barnes, S. E.
    PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON FOUNDATIONS OF QUANTUM MECHANICS IN THE LIGHT OF NEW TECHNOLOGY, 2009, : 134 - +