On 3-connected plane graphs without triangular faces

被引:16
|
作者
Harant, J [1 ]
Jendrol, S
Tkac, M
机构
[1] Tech Univ Ilmenau, Dept Math, D-98684 Ilmenau, Germany
[2] Safarik Univ, Dept Geometry & Algebra, Kosice 04154, Slovakia
关键词
planar graph; polyhedral map; light subgraph; triangle-free graph; path; compact 2-dimensional manifold; spanning subgraph;
D O I
10.1006/jctb.1999.1918
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that each polyhedral triangular face free map G on a compact 2-dimensional manifold Rd with Euler characteristic chi ( M) contains a k-path, i.e., a path on k vertices, such that each vertex of this path has, in G, degree at most (5/2) k if M is a sphere S-0 and at most (k/2)[(5 + root 49 - 24 chi(M))/2] if M not equal S-0 or does not contain any k-path. We show that For even k this bound is best possible. Moreover, we show that for any graph other than a path no similiar estimation exists. (C) 1999 Academic Press.
引用
收藏
页码:150 / 161
页数:12
相关论文
共 50 条