Reproducibility in the negative differential resistance characteristic of In0.17Al0.83N/GaN resonant tunneling diodes-Theoretical investigation

被引:7
|
作者
Chen, Haoran [1 ]
Yang, Lin'an [1 ]
Long, Shuang [1 ]
Hao, Yue [1 ]
机构
[1] Xidian Univ, State Key Discipline Lab Wide Bandgap Semicond Te, Sch Microelect, Xian 710071, Peoples R China
关键词
GAN; HETEROSTRUCTURES; TRANSPORT; BARRIER;
D O I
10.1063/1.4804414
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report on a simulation of gallium nitride (GaN) based resonant tunneling diode (RTD) at the Silvaco's ATLAS simulation platform with indium aluminum nitride (InAlN) as barrier layer. Results show that an excellent reproducibility of negative-differential-resistance (NDR) characteristic can be achieved when experimentally obtained deep-level trapping centers at the activation energy of 0.351 and 0.487 eV, respectively, are introduced into the polarized InAlN/GaN/InAlN quantum well. Theoretical analysis reveals that the lattice-matched InAlN/GaN heterostructure with stronger spontaneous polarization and weaker piezoelectric polarization can reduce the activation energy level of trapping centers, suppress the probability of ionization of the trapping centers, and therefore minimize the degradation of NDR characteristics, which demonstrates a potential application of the GaN-based RTD in terahertz regime. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] The function of an In0.17Al0.83N interlayer in n-ZnO/In0.17Al0.83N/p-GaN heterojunctions
    Wang, Xiao
    Gan, Xuewei
    Zhang, Guozhen
    Su, Xi
    Zheng, Meijuan
    Ai, Zhiwei
    Wu, Hao
    Liu, Chang
    APPLIED SURFACE SCIENCE, 2017, 393 : 221 - 224
  • [2] Capacitance scattering mechanism in lattice-matched In0.17Al0.83N/GaN heterojunction Schottky diodes
    Ren Jian
    Su Li-Na
    Li Wen-Jia
    ACTA PHYSICA SINICA, 2018, 67 (24)
  • [3] Leakage current degradation in lattice-matched In0.17Al0.83N/GaN Shottky barrier diodes
    Ren, J.
    Li, W. J.
    Su, L. N.
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2021, 15 (3-4): : 176 - 179
  • [4] 晶格匹配In0.17Al0.83N/GaN异质结电容散射机制
    任舰
    苏丽娜
    李文佳
    物理学报, 2018, 67 (24) : 212 - 216
  • [5] Investigation of the negative differential resistance reproducibility in AlN/GaN double-barrier resonant tunnelling diodes
    Boucherit, M.
    Soltani, A.
    Monroy, E.
    Rousseau, M.
    Deresmes, D.
    Berthe, M.
    Durand, C.
    De Jaeger, J. -C.
    APPLIED PHYSICS LETTERS, 2011, 99 (18)
  • [6] Evidence of Type-II Band Alignment in III-nitride Semiconductors: Experimental and theoretical investigation for In0.17Al0.83N/GaN heterostructures
    Jiaming Wang
    Fujun Xu
    Xia Zhang
    Wei An
    Xin-Zheng Li
    Jie Song
    Weikun Ge
    Guangshan Tian
    Jing Lu
    Xinqiang Wang
    Ning Tang
    Zhijian Yang
    Wei Li
    Weiying Wang
    Peng Jin
    Yonghai Chen
    Bo Shen
    Scientific Reports, 4
  • [7] Evidence of Type-II Band Alignment in III-nitride Semiconductors: Experimental and theoretical investigation for In0.17Al0.83N/GaN heterostructures
    Wang, Jiaming
    Xu, Fujun
    Zhang, Xia
    An, Wei
    Li, Xin-Zheng
    Song, Jie
    Ge, Weikun
    Tian, Guangshan
    Lu, Jing
    Wang, Xinqiang
    Tang, Ning
    Yang, Zhijian
    Li, Wei
    Wang, Weiying
    Jin, Peng
    Chen, Yonghai
    Shen, Bo
    SCIENTIFIC REPORTS, 2014, 4
  • [8] Bidirectional negative differential resistance in AlN/GaN resonant tunneling diodes grown on freestanding GaN
    Qiu, Haibing
    Zhou, Xiangpeng
    Yang, Wenxian
    Zhang, Xue
    Jin, Shan
    Lu, Shulong
    Qin, Hua
    Bian, Lifeng
    APPLIED PHYSICS LETTERS, 2021, 119 (06)
  • [9] Demonstration of negative differential resistance in GaN/AlN resonant tunneling diodes at room temperature
    Vashaei, Z.
    Bayram, C.
    Razeghi, M.
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (08)
  • [10] Study of high Al fraction in AlGaN barrier HEMT and GaN and InGaN channel HEMT with In0.17Al0.83N barrier
    Sinha, Krishnpriya
    Dubey, Shashank Kumar
    Islam, Aminul
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2020, 26 (07): : 2145 - 2158