A background error covariance model of significant wave height employing Monte Carlo simulation

被引:7
|
作者
Guo Yanyou [1 ,2 ]
Hou Yijun [2 ]
Zhang Chunmei [3 ]
Yang Jie [1 ]
机构
[1] Huaihai Inst Technol, Lianyungang 222005, Peoples R China
[2] Chinese Acad Sci, Inst Oceanol, Qingdao 266071, Peoples R China
[3] Meteorol Bur Lianyungang, Lianyungang 222006, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
background error covariance; data assimilation; Monte Carlo method; ocean wave; DATA ASSIMILATION SYSTEM; ALTIMETER DATA; IMPACT; OCEAN;
D O I
10.1007/s00343-012-1278-5
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The quality of background error statistics is one of the key components for successful assimilation of observations in a numerical model. The background error covariance (BEC) of ocean waves is generally estimated under an assumption that it is stationary over a period of time and uniform over a domain. However, error statistics are in fact functions of the physical processes governing the meteorological situation and vary with the wave condition. In this paper, we simulated the BEC of the significant wave height (SWH) employing Monte Carlo methods. An interesting result is that the BEC varies consistently with the mean wave direction (MWD). In the model domain, the BEC of the SWH decreases significantly when the MWD changes abruptly. A new BEC model of the SWH based on the correlation between the BEC and MWD was then developed. A case study of regional data assimilation was performed, where the SWH observations of buoy 22001 were used to assess the SWH hindcast. The results show that the new BEC model benefits wave prediction and allows reasonable approximations of anisotropy and inhomogeneous errors.
引用
收藏
页码:814 / 821
页数:8
相关论文
共 50 条
  • [1] A background error covariance model of significant wave height employing Monte Carlo simulation
    Yanyou Guo
    Yijun Hou
    Chunmei Zhang
    Jie Yang
    Chinese Journal of Oceanology and Limnology, 2012, 30 : 814 - 821
  • [2] A background error covariance model of significant wave height employing Monte Carlo simulation
    郭衍游
    侯一筠
    张春美
    杨杰
    Journal of Oceanology and Limnology, 2012, (05) : 814 - 821
  • [3] SIMULATION OF JACK-UP OVERTURNING USING THE MONTE CARLO METHOD WITH ARTIFICIALLY INCREASED SIGNIFICANT WAVE HEIGHT
    Jensen, Jorgen Juncher
    PROCEEDINGS OF THE ASME 29TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING 2010, VOL 2, 2010, : 831 - 836
  • [4] Monte-Carlo Simulation of Error Sort Model
    Fukuda, Ryoji
    Oka, Kaoru
    NONLINEAR MATHEMATICS FOR UNCERTAINTY AND ITS APPLICATIONS, 2011, 100 : 479 - +
  • [5] Multivariate error covariance estimates by Monte Carlo simulation for assimilation studies in the Pacific Ocean
    Borovikov, A
    Rienecker, MM
    Keppenne, CL
    Johnson, GC
    MONTHLY WEATHER REVIEW, 2005, 133 (08) : 2310 - 2334
  • [6] Error reduction using covariance in quantum Monte Carlo simulations
    Sandvik, AW
    PHYSICAL REVIEW B, 1996, 54 (21): : 14910 - 14913
  • [7] Monte Carlo simulation of the SABRE PoP background
    Antonello, M.
    Barberio, E.
    Baroncelli, T.
    Benziger, J.
    Bignell, L. J.
    Bolognino, I.
    Calaprice, F.
    Copello, S.
    D'Angelo, D.
    D'Imperio, G.
    Dafinei, I.
    Di Carlo, G.
    Diemoz, M.
    Di Ludovico, A.
    Duffy, A. R.
    Froborg, F.
    Giovanetti, G. K.
    Hoppe, E.
    Ianni, A.
    Ioannucci, L.
    Krishnan, S.
    Lane, G. J.
    Mahmood, I.
    Mariani, A.
    McGee, P.
    Montini, P.
    Mould, J.
    Nuti, F.
    Orlandi, D.
    Paris, M.
    Pettinacci, V.
    Pietrofaccia, L.
    Prokopovich, D.
    Rahatlou, S.
    Rossi, N.
    Sarbutt, A.
    Shields, E.
    Souza, M. J.
    Stuchbery, A. E.
    Suerfu, B.
    Tomei, C.
    Urquijo, P.
    Vignoli, C.
    Wada, M.
    Wallner, A.
    Williams, A. G.
    Xu, J.
    Zurowski, M.
    ASTROPARTICLE PHYSICS, 2019, 106 : 1 - 9
  • [8] On Monte Carlo Simulation of the Bit Error Rate
    Mazzeo, Brian
    Rice, Michael
    2011 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2011,
  • [9] Monte Carlo simulation of edge placement error
    Kobayashi, Shinji
    Okada, Soichiro
    Shimura, Satoru
    Nafus, Kathleen
    Fonseca, Carlos
    Estrella, Joel
    Enomoto, Masashi
    METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXXII, 2018, 10585
  • [10] Monte Carlo simulation of body height in a spatial network
    M Hermanussen
    C Aßmann
    D Groth
    European Journal of Clinical Nutrition, 2016, 70 : 671 - 678