Fast modulo 2k-1 multiplication

被引:0
|
作者
Jablonski, Janusz [1 ]
Dylewski, Robert [1 ]
机构
[1] Uniwersytet Zielonogorski, Wydzialu Matemat Informatyki & Ekonometrii, PL-65516 Zielona Gora, Poland
来源
PRZEGLAD ELEKTROTECHNICZNY | 2012年 / 88卷 / 08期
关键词
modulo multiplier; CSA; partial products; Wallace tree;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article represents the author's conception of multiplier modulo 2k-1, leaning on reducer 4:2. The proposed solution gives the possibility of detecting and the quicker marking - the less logical levels, special cases of multiplication, connected with specific values sums of partial products. This presented solution and circuit can accelerate parallel multplier - built on Wallace tree addition. (Fast modulo 2k-1 multiplication).
引用
收藏
页码:145 / 147
页数:3
相关论文
共 50 条
  • [1] RNS-To-Binary converters for New Three-moduli sets {2k,2k-1, 2k(2k-1)+1} and {2k,2k-1, 2k(2k-1)-1}
    Phalguna, P. S.
    Kamat, Dattaguru, V
    Mohan, P. V. Ananda
    2019 IEEE ASIA PACIFIC CONFERENCE ON POSTGRADUATE RESEARCH IN MICROELECTRONICS AND ELECTRONICS (PRIMEASIA 2019): INNOVATIVE CAS TOWARDS SUSTAINABLE ENERGY AND TECHNOLOGY DISRUPTION, 2019, : 33 - 36
  • [2] BEST K OF 2K-1 COMPARISONS
    MAISEL, H
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1966, 61 (314P) : 329 - &
  • [3] Removing colors 2k, 2k-1, and k
    Lopes, Pedro
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2019, 28 (13)
  • [4] A Combinatorial Proof of a Relationship Between Maximal (2k-1, 2k+1)-cores and (2k-1, 2k, 2k+1)-cores
    Nath, Rishi
    Sellers, James A.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (01):
  • [5] Radius of (2k-1)-connected graphs
    Egawa, Y
    Inoue, K
    ARS COMBINATORIA, 1999, 51 : 89 - 95
  • [6] Error tolerance in DNA self-assembly by (2k-1) x (2k-1) snake tile sets
    Ma, X.
    Huang, J.
    Lombardi, F.
    25TH IEEE VLSI TEST SYMPOSIUM, PROCEEDINGS, 2007, : 131 - +
  • [7] Algorithm for modulo (2n+1) multiplication
    Sousa, LA
    ELECTRONICS LETTERS, 2003, 39 (09) : 752 - 754
  • [8] Fast Secure Computation Based on a Secret Sharing Scheme for n < 2k-1
    Tokita, Kyohei
    Iwamura, Keiichi
    PROCEEDINGS OF THE 2018 FOURTH INTERNATIONAL CONFERENCE ON MOBILE AND SECURE SERVICES (MOBISECSERV), 2018,
  • [9] Error tolerant DNA self-assembly using (2k-1) x (2k-1) snake tile sets
    Ma, Xiaojun
    Huang, Jing
    Lombardi, Fabrizio
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2008, 7 (01) : 56 - 64
  • [10] ON IMMERSIONS OF K-MANIFOLDS IN (2K-1)-MANIFOLDS
    LI, BH
    PETERSON, FP
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 83 (01) : 159 - 162