Convergence property of gradient-type methods with non-monotone line search in the presence of perturbations

被引:7
|
作者
Li, MX [1 ]
Wang, CY
机构
[1] Weifang Univ, Dept Math, Shandong 261041, Peoples R China
[2] Qufu Normal Univ, Inst Operat Res, Shandong 276826, Peoples R China
基金
中国国家自然科学基金;
关键词
gradient-type method; hybrid projection method; non-monotone line search; perturbation; global convergence;
D O I
10.1016/j.amc.2005.05.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, two new kinds of methods which are called gradient-type method and hybrid projection method with perturbations are proposed and non-monotone line search technique is employed. At the same time, global convergence of these methods is proved only in the case where the gradient function is uniformly continuous on an open convex set containing the iteration sequence. Numerical examples are given at the end of this paper. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:854 / 868
页数:15
相关论文
共 50 条
  • [1] The global convergence of the non-quasi-Newton methods with non-monotone line search
    Jiao, Bao-Cong
    Liu, Hong-Wei
    Journal of Harbin Institute of Technology (New Series), 2006, 13 (06) : 758 - 762
  • [2] The convergence of equilibrium algorithms with non-monotone line search technique
    Gao, ZY
    Lam, WHK
    Wong, SC
    Yang, H
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 148 (01) : 1 - 13
  • [3] A fast non-monotone line search for stochastic gradient descent
    Fathi Hafshejani, Sajad
    Gaur, Daya
    Hossain, Shahadat
    Benkoczi, Robert
    OPTIMIZATION AND ENGINEERING, 2024, 25 (02) : 605 - +
  • [4] A fast non-monotone line search for stochastic gradient descent
    Sajad Fathi Hafshejani
    Daya Gaur
    Shahadat Hossain
    Robert Benkoczi
    Optimization and Engineering, 2024, 25 : 1105 - 1124
  • [5] On the convergence properties of scaled gradient projection methods with non-monotone Armijo–like line searches
    Crisci S.
    Porta F.
    Ruggiero V.
    Zanni L.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2022, 68 (2) : 521 - 554
  • [6] A Class of Gradient-type Methods with Perturbations
    Li, Meixia
    COMPUTATIONAL MATERIALS SCIENCE, PTS 1-3, 2011, 268-270 : 904 - 907
  • [7] Global convergence results of a three term memory gradient method with a non-monotone line search technique
    Sun, QY
    ACTA MATHEMATICA SCIENTIA, 2005, 25 (01) : 170 - 178
  • [8] GLOBAL CONVERGENCE RESULTS OF A THREE TERM MEMORY GRADIENT METHOD WITH A NON-MONOTONE LINE SEARCH TECHNIQUE
    孙清滢
    Acta Mathematica Scientia, 2005, (01) : 170 - 178
  • [9] A subgradient method with non-monotone line search
    O. P. Ferreira
    G. N. Grapiglia
    E. M. Santos
    J. C. O. Souza
    Computational Optimization and Applications, 2023, 84 : 397 - 420
  • [10] A subgradient method with non-monotone line search
    Ferreira, O. P.
    Grapiglia, G. N.
    Santos, E. M.
    Souza, J. C. O.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 84 (02) : 397 - 420