RINGS WHOSE IDEMPOTENTS FORM A MULTIPLICATIVE SET

被引:7
|
作者
Cvetko-Vah, Karin [2 ]
Leech, Jonathan [1 ]
机构
[1] Westmont Coll, Dept Math, Santa Barbara, CA 93108 USA
[2] Univ Ljubljana, Dept Math, Ljubljana, Slovenia
关键词
D-Class; Idempotent element; Normal band; Skew Boolean algebra; SKEW LATTICES;
D O I
10.1080/00927872.2011.567405
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring whose set of idempotents E(R) is closed under multiplication. When R has an identity 1, E(R) is known to lie in the center of R, thus forming a Boolean algebra. In this article we consider what occurs if R has no identity, in which case E(R) is a possibly noncommutative variant of a generalized Boolean algebra. We explore the effects of E(R) on the structure of R, giving attention to various induced decompositions of R.
引用
收藏
页码:3288 / 3307
页数:20
相关论文
共 50 条
  • [1] Rings whose nilpotents form a multiplicative set
    Choi, Kwang Jin
    Kwak, Tai Keun
    Lee, Yang
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (08) : 3229 - 3240
  • [2] RINGS WITH MULTIPLICATIVE SETS OF PRIMITIVE IDEMPOTENTS
    Grover, Harpreet K.
    Khurana, Dinesh
    Singh, Surjeet
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (08) : 2583 - 2590
  • [3] MULTIPLICATIVE SET OF IDEMPOTENTS IN A SEMIPERFECT RING
    Park, Sangwon
    Han, Juncheol
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (05) : 1033 - 1039
  • [4] CHAINS IN SET OF IDEMPOTENTS IN RINGS
    FARES, N
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 269 (10): : 377 - &
  • [5] ADDITIVE SET OF IDEMPOTENTS IN RINGS
    Han, Juncheol
    Park, Sangwon
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (09) : 3551 - 3557
  • [6] SEMIGROUPS WHOSE IDEMPOTENTS FORM A SUBSEMIGROUP
    ALMEIDA, J
    PIN, JE
    WEIL, P
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1992, 111 : 241 - 253
  • [7] SEMIGROUPS WHOSE IDEMPOTENTS FORM A SUBSEMIGROUP
    BIRGET, JC
    MARGOLIS, S
    RHODES, J
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1990, 41 (02) : 161 - 184
  • [8] Idempotents and the multiplicative group of some totally bounded rings
    Mohamed A. Salim
    Adela Tripe
    Czechoslovak Mathematical Journal, 2011, 61 : 509 - 519
  • [9] A FINITE ADDITIVE SET OF IDEMPOTENTS IN RINGS
    Han, Juncheol
    Park, Sangwon
    KOREAN JOURNAL OF MATHEMATICS, 2013, 21 (04): : 463 - 471
  • [10] IDEMPOTENTS AND THE MULTIPLICATIVE GROUP OF SOME TOTALLY BOUNDED RINGS
    Salim, Mohamed A.
    Tripe, Adela
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2011, 61 (02) : 509 - 519