Real-Time Multimodal Feedback with the CPR Tutor

被引:11
|
作者
Di Mitri, Daniele [1 ]
Schneider, Jan [2 ]
Trebing, Kevin [3 ]
Sopka, Sasa [4 ]
Specht, Marcus [5 ]
Drachsler, Hendrik [1 ,2 ]
机构
[1] Open Univ Netherlands, Valkenburgerweg 177, NL-6419 AT Heerlen, Netherlands
[2] DIPF Leibniz Inst Res & Informat Educ, Frankfurt, Germany
[3] Maastricht Univ, Maastricht, Netherlands
[4] AIXTRA RWTH Aachen Univ Hosp, Aachen, Germany
[5] Delft Univ Technol, Delft, Netherlands
关键词
D O I
10.1007/978-3-030-52237-7_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We developed the CPR Tutor, a real-time multimodal feedback system for cardiopulmonary resuscitation (CPR) training. The CPR Tutor detects mistakes using recurrent neural networks for real-time time-series classification. From a multimodal data stream consisting of kinematic and electromyographic data, the CPR Tutor system automatically detects the chest compressions, which are then classified and assessed according to five performance indicators. Based on this assessment, the CPR Tutor provides audio feedback to correct the most critical mistakes and improve the CPR performance. To test the validity of the CPR Tutor, we first collected the data corpus from 10 experts used for model training. Hence, to test the impact of the feedback functionality, we ran a user study involving 10 participants. The CPR Tutor pushes forward the current state of the art of real-time multimodal tutors by providing: 1) an architecture design, 2) a methodological approach to design multimodal feedback and 3) a field study on real-time feedback for CPR training.
引用
收藏
页码:141 / 152
页数:12
相关论文
共 50 条
  • [1] Real-time feedback systems in CPR
    Gruber, Julia
    Stumpf, Dominik
    Zapletal, Bernhard
    Neuhold, Stephanie
    Fischer, Henrik
    TRENDS IN ANAESTHESIA AND CRITICAL CARE, 2012, 2 (06) : 287 - 294
  • [2] Multimodal Tutor for CPR
    Di Mitri, Daniele
    ARTIFICIAL INTELLIGENCE IN EDUCATION, PT II, 2018, 10948 : 513 - 516
  • [3] Real-time feedback for CPR quality - A scoping review
    Masterson, Siobhan
    Norii, Tatsuya
    Yabuki, Mio
    Ikeyama, Takaya
    Nehme, Ziad
    Bray, Janet
    RESUSCITATION PLUS, 2024, 19
  • [4] Time to incorporate real-time CPR feedback and CPR debriefings into advanced life support courses
    Cheng, Adam
    Donoghue, Aaron
    Bhanji, Farhan
    RESUSCITATION, 2015, 90 : E3 - E4
  • [5] Improvements in Emergency Department CPR Quality Utilizing Real-Time Audiovisual CPR Feedback
    Crowe, Christopher
    Bronnenkant, Tyler
    Silver, Annemarie
    Hefner, Marcia
    Vadeboncoeur, Tyler
    LoVecchio, Frank
    Stolz, Uwe
    Spaite, Daniel
    Bobrow, Bentley
    CIRCULATION, 2013, 128 (22)
  • [6] IMPROVING COMPETENCY WITH REAL-TIME CPR FEEDBACK USING ROLLING REFRESHERS
    Steele, R. W.
    Janisko, J.
    Schexnayder, S.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2017, 65 (02) : 639 - 639
  • [7] Keep Me in the Loop: Real-Time Feedback with Multimodal Data
    Di Mitri, Daniele
    Schneider, Jan
    Drachsler, Hendrik
    INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE IN EDUCATION, 2022, 32 (04) : 1093 - 1118
  • [8] Keep Me in the Loop: Real-Time Feedback with Multimodal Data
    Daniele Di Mitri
    Jan Schneider
    Hendrik Drachsler
    International Journal of Artificial Intelligence in Education, 2022, 32 : 1093 - 1118
  • [9] Enhancing positional feedback from real-time wearable sensors during CPR
    Pantanowitz, Adam
    Ward, Sarah R.
    Scott, Bronwyn C.
    Rubin, David M.
    RESUSCITATION, 2019, 139 : 289 - 290
  • [10] IMPROVING COMPRESSION QUALITY AT A SINGLE INSTITUTION THROUGH REAL-TIME CPR FEEDBACK
    Meert, Kathleen
    Telford, Russell
    Holubkov, Richard
    Slomine, Beth
    Christensen, James
    Dean, J. Michael
    Moler, Frank
    CRITICAL CARE MEDICINE, 2016, 44 (12)