Stability conditions and Lagrangian cobordisms

被引:0
|
作者
Hensel, Felix [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8001 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
CATEGORIES; BUNDLES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the interplay between Lagrangian cobordisms and stability conditions. We show that any stability condition on the derived Fukaya category DFuk(M) of a symplectic manifold (M, omega) induces a stability condition on the derived Fukaya category of Lagrangian cobordisms DFuk(C x M). In addition, using stability conditions, we provide general conditions un- der which the homomorphism Theta : Omega(Lag) (M) -> K-0 (DFuk(M)), introduced by Biran and Cornea [6, 7], is an isomorphism. This yields a better understanding of how stability conditions affect Theta and it allows us to elucidate Haug's result, that the Lagrangian cobordism group of T-2 is isomorphic to K-0(DFuk(T-2)) [23].
引用
收藏
页码:463 / 536
页数:74
相关论文
共 50 条
  • [1] Lagrangian cobordisms and Lagrangian surgery
    Hicks, Jeff
    COMMENTARII MATHEMATICI HELVETICI, 2023, 98 (03) : 509 - 595
  • [2] Corrigendum to "Lagrangian cobordisms and Lagrangian surgery"
    Hicks, Jeff
    COMMENTARII MATHEMATICI HELVETICI, 2024, 99 (01) : 229 - 229
  • [3] A stable ∞-category of Lagrangian cobordisms
    Nadler, David
    Tanaka, Hiro Lee
    ADVANCES IN MATHEMATICS, 2020, 366
  • [4] Lagrangian cobordisms in Liouville manifolds
    Bosshard, Valentin
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2024, 16 (05) : 777 - 831
  • [5] Topology of (small) Lagrangian cobordisms
    Bisgaard, Mads R.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2019, 19 (02): : 701 - 742
  • [6] FLOER THEORY FOR LAGRANGIAN COBORDISMS
    Chantraine, Baptiste
    Dimitroglou Rizell, Georgios
    Ghiggini, Paolo
    Golovko, Roman
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2020, 114 (03) : 393 - 465
  • [7] Spectral GRID Invariants and Lagrangian Cobordisms
    Jubeir, Mitchell
    Petkova, Ina
    Schwartz, Noah
    Winkeler, Zachary
    Wong, C. -M. Michael
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2025, 61 (04) : 311 - 340
  • [8] Legendrian knots and exact Lagrangian cobordisms
    Ekholm, Tobias
    Honda, Ko
    Kalman, Tamas
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2016, 18 (11) : 2627 - 2689
  • [9] OBSTRUCTIONS TO THE EXISTENCE AND SQUEEZING OF LAGRANGIAN COBORDISMS
    Sabloff, Joshua M.
    Traynor, Lisa
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2010, 2 (02) : 203 - 232
  • [10] Functorial LCH for immersed Lagrangian cobordisms
    Pan, Yu
    Rutherford, Dan
    JOURNAL OF SYMPLECTIC GEOMETRY, 2021, 19 (03) : 635 - 722