In this paper we study the interplay between Lagrangian cobordisms and stability conditions. We show that any stability condition on the derived Fukaya category DFuk(M) of a symplectic manifold (M, omega) induces a stability condition on the derived Fukaya category of Lagrangian cobordisms DFuk(C x M). In addition, using stability conditions, we provide general conditions un- der which the homomorphism Theta : Omega(Lag) (M) -> K-0 (DFuk(M)), introduced by Biran and Cornea [6, 7], is an isomorphism. This yields a better understanding of how stability conditions affect Theta and it allows us to elucidate Haug's result, that the Lagrangian cobordism group of T-2 is isomorphic to K-0(DFuk(T-2)) [23].
机构:
Univ Nantes, Lab Math Jean Leray, 2 Rue Houssiniere,BP 92208, F-44322 Nantes 3, FranceUniv Nantes, Lab Math Jean Leray, 2 Rue Houssiniere,BP 92208, F-44322 Nantes 3, France
Chantraine, Baptiste
Dimitroglou Rizell, Georgios
论文数: 0引用数: 0
h-index: 0
机构:
Uppsala Univ, Dept Math, Box 480, SE-75106 Uppsala, SwedenUniv Nantes, Lab Math Jean Leray, 2 Rue Houssiniere,BP 92208, F-44322 Nantes 3, France
Dimitroglou Rizell, Georgios
Ghiggini, Paolo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nantes, Lab Math Jean Leray, CNRS, 2 Rue Houssiniere,BP 92208, F-44322 Nantes 3, FranceUniv Nantes, Lab Math Jean Leray, 2 Rue Houssiniere,BP 92208, F-44322 Nantes 3, France
Ghiggini, Paolo
Golovko, Roman
论文数: 0引用数: 0
h-index: 0
机构:
Charles Univ Prague, Fac Math & Phys, Sokolovska Str 83, Prague 18000 8, Czech RepublicUniv Nantes, Lab Math Jean Leray, 2 Rue Houssiniere,BP 92208, F-44322 Nantes 3, France