Mechanochemical Synthesis of Bimetallic NiCo Supported on a CeO2 Catalyst with Less Metal Loading for Non-Thermal Plasma Catalytic CO2 Hydrogenation

被引:14
|
作者
Chen, Huanhao [1 ]
Guo, Wei [1 ]
Fan, Xiaolei [2 ,3 ,4 ]
机构
[1] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 211816, Peoples R China
[2] Univ Manchester, Sch Engn, Dept Chem Engn, Manchester M13 9PL, Lancs, England
[3] Nottingham Ningbo China Beacons Excellence Res &, Ningbo 315048, Peoples R China
[4] Zhejiang Univ, Inst Wenzhou, Wenzhou Key Lab Novel Optoelect & Nanomat, Wenzhou 325006, Peoples R China
来源
ACS ENGINEERING AU | 2022年 / 3卷 / 01期
基金
中国国家自然科学基金;
关键词
CO2; hydrogenation; plasma catalysis; bimetallic NiCo/CeO2 catalyst; less metal loading; mechanochemical synthesis; METHANATION; NANOPARTICLES; ZEOLITES; SURFACES;
D O I
10.1021/acsengineeringau.2c00032
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Non-thermal plasma (NTP) catalysis is a promising technology for CO2 valorization with renewable H-2, in which catalyst design is one of the key aspects to progress the hybrid technology. Herein, bimetallic NiCo supported on CeO2 catalysts, that is, NiCo/CeO2, were developed with less metal loading of similar to 2 wt % using mechanochemical synthesis for NTP-catalytic CO2 methanation. During the synthesis, different addition orders of Ni and Co precursors were investigated, and the results show that the NiCo1/CeO2-I catalyst (which was prepared by the simultaneous addition of Ni and Co precursors, protocol I) exhibited the highest CO2 conversion (similar to 60%) and CH4 selectivity/yield (similar to 80%/ similar to 50%), whereas the NiCo1/CeO2-II and NiCo1/CeO2-III catalysts (prepared by sequential addition protocols of II and III) showed very poor catalytic performance. Characterization results suggested that in protocol I, Ni and Co prefer to alloy, and concentrated oxygen vacancies on the CeO2 surface and high surface basicity are retained as well. Such properties of NiCo1/CeO2-I were responsible for CO2 activation and hydrogenation under NTP conditions, which was explained by the proposed mechanisms.
引用
收藏
页码:7 / 16
页数:10
相关论文
共 50 条
  • [1] Mechanochemical Synthesis of Ni-Y/CeO2 Catalyst for Nonthermal Plasma Catalytic CO2 Methanation
    Guo, Wei
    Chen, Huanhao
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (04) : 1666 - 1674
  • [2] Synergetic effect of non-thermal plasma and supported cobalt catalyst in plasma-enhanced CO2 hydrogenation
    Wang, Jiajie
    Wang, Xiaoxing
    AlQahtani, Mohammad S.
    Knecht, Sean D.
    Bilen, Sven G.
    Chu, Wei
    Song, Chunshan
    CHEMICAL ENGINEERING JOURNAL, 2023, 451
  • [3] Synergetic effect of non-thermal plasma and supported cobalt catalyst in plasma-enhanced CO2 hydrogenation
    Wang, Jiajie
    Wang, Xiaoxing
    AlQahtani, Mohammad S.
    Knecht, Sean D.
    Bilén, Sven G.
    Chu, Wei
    Song, Chunshan
    Chemical Engineering Journal, 2023, 451
  • [4] CO2 HYDROGENATION TO METHANOL OVER PdZn/CeO2 CATALYST
    Ojelade, Opeyemi A.
    Zaman, Sharif F.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2019, 72 (06): : 732 - 739
  • [5] Effect of CeO2 morphology on the performance of CuO/CeO2 catalyst for CO2 hydrogenation to methanol
    Zhang J.
    Lin L.
    Gao W.
    Zhu X.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2022, 41 (08): : 4213 - 4223
  • [6] Efficient degradation of chlorobenzene in a non-thermal plasma catalytic reactor supported on CeO2/HZSM-5 catalysts
    Jiang, Liying
    Nie, Guofeng
    Zhu, Runye
    Wang, Jiade
    Chen, Jianmeng
    Mao, Yubo
    Cheng, Zhuowei
    Anderson, Willam A.
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2017, 55 : 266 - 273
  • [7] Application of Co/ZSM-5 Catalyst and Non-Thermal Plasma on CO2 Hydrogenation to Light Hydrocarbons
    Lan, Liying
    Zeng, Aonan
    Wang, Anjie
    Wang, Yao
    Shiyou Xuebao, Shiyou Jiagong/Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36 (02): : 293 - 300
  • [8] Efficient degradation of chlorobenzene in a non-thermal plasma catalytic reactor supported on CeO2/HZSM-5 catalysts
    Liying Jiang
    Guofeng Nie
    Runye Zhu
    Jiade Wang
    Jianmeng Chen
    Yubo Mao
    Zhuowei Cheng
    Willam A.Anderson
    Journal of Environmental Sciences, 2017, 55 (05) : 266 - 273
  • [9] Activity of bimetallic PdIn/CeO2 catalysts tuned by thermal reduction for improving methanol synthesis via CO2 hydrogenation
    Shao, Yan
    Wu, Bohong
    Qiu, Boya
    Cai, Rongsheng
    Quan, Cui
    Gao, Ningbo
    Zeng, Feng
    Fan, Xiaolei
    Chen, Huanhao
    AICHE JOURNAL, 2025, 71 (01)
  • [10] CO2 hydrogenation on Co/CeO2-δ catalyst: Morphology effect from CeO2 support
    Xie, Fengqiong
    Xu, Shiyu
    Deng, Lidan
    Xie, Hongmei
    Zhou, Guilin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (51) : 26938 - 26952