A method for extracting subspace of deterministic sources from EEG data

被引:0
|
作者
Ivannikov, Andriy [1 ]
Kaerkkaeinen, Tommi [1 ]
Ristaniemi, Tapani [1 ]
Lyytinen, Heikki [2 ]
机构
[1] Univ Jyvaskyla, Dept Math Informat Technol, SF-40351 Jyvaskyla, Finland
[2] Univ Jyvaskyla, Dept Psychol, Jyvaskyla, Finland
关键词
D O I
10.1109/ISCCSP.2008.4537438
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, an algorithm for separating linear subspaces of time-locked brain responses and other noise sources in multichannel electroencephalography data is proposed. The search criterion used by method discriminates time-locked brain components and noise components on the basis of the assumed deterministic behavior that the time-locked brain sources obey. The comprehensive derivation of the method is given together with the description and the analysis of the results of the method's application to simulated and real EEG data sets. The possibilities of improving the results are also discussed.
引用
收藏
页码:1361 / +
页数:2
相关论文
共 50 条
  • [1] A Supervised Learning Method for Extracting and Classifying EEG Data
    Li, Qingxia
    Zhao, Jiamin
    INTERNATIONAL CONFERENCE ON ALGORITHMS, HIGH PERFORMANCE COMPUTING, AND ARTIFICIAL INTELLIGENCE (AHPCAI 2021), 2021, 12156
  • [2] The Feature Extracting Method via Partitioning the Feature Subspace and Data Fusion
    Huang, Hao
    Mei, Famao
    Wu, Qinqin
    Bao, Yuanyi
    Zhang, Hengshan
    4TH INTERNATIONAL CONFERENCE ON INFORMATICS ENGINEERING AND INFORMATION SCIENCE (ICIEIS2021), 2022, 12161
  • [3] Disambiguation data: Extracting information from anonymized sources
    Dreiseitl, S
    Vinterbo, S
    Ohno-Machado, L
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2002, 9 (06) : S110 - S114
  • [4] Disambiguation data: Extracting information from anonymized sources
    Dreiseitl, S
    Vinterbo, S
    Ohno-Machado, L
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2001, : 144 - 148
  • [5] The deterministic subspace method for constructing classifier ensembles
    Michał Koziarski
    Bartosz Krawczyk
    Michał Woźniak
    Pattern Analysis and Applications, 2017, 20 : 981 - 990
  • [6] The deterministic subspace method for constructing classifier ensembles
    Koziarski, Michal
    Krawczyk, Bartosz
    Wozniak, Michal
    PATTERN ANALYSIS AND APPLICATIONS, 2017, 20 (04) : 981 - 990
  • [7] Subspace sums for extracting non-random data from massive noise
    Anne M. Denton
    Knowledge and Information Systems, 2009, 20 : 35 - 62
  • [8] Subspace sums for extracting non-random data from massive noise
    Denton, Anne M.
    KNOWLEDGE AND INFORMATION SYSTEMS, 2009, 20 (01) : 35 - 62
  • [9] ScalingNet: Extracting features from raw EEG data for emotion recognition
    Hu, Jingzhao
    Wang, Chen
    Jia, Qiaomei
    Bu, Qirong
    Sutcliffe, Richard
    Feng, Jun
    NEUROCOMPUTING, 2021, 463 : 177 - 184
  • [10] On deterministic conditions for subspace clustering under missing data
    Wang, Wenqi
    Aeron, Shuchin
    Aggarwal, Vaneet.
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 850 - 854