On traceable and upper traceable numbers of graphs

被引:0
|
作者
Fujie, Futaba [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Nagoya, Aichi 4648602, Japan
关键词
Hamiltonian graphs; traceable graphs; traceable number; upper traceable number;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a connected graph G of order n >= 2 and a linear ordering s: v(1), v(2), ..., v(n) of V(G), define d(s) = Sigma(n-1)(i=1) d(v(i), v(i+1)). The traceable number t(G) and upper traceable number t(+)(G) of G are defined by t(G) = min{d(s)} and t(+) (G) = max{d(s)}, respectively, where the minimum and maximum are taken over all linear orderings s of V(G). Consequently, t(G) <= t(+)(G). It is known that n - 1 <= t(G) <= 2n - 4' and n - 1 <= t(+)(G) <= left perpendicularn(2)/2left perpendicular - 1 for every connected graph G of order n >= 3 and, furthermore, for every pair n, A of integers with 2 <= n - 1 <= A <= 2n - 4 there exists a graph of order n whose traceable number equals A. In this work we determine all pairs A, B of positive integers with A <= B that are realizable as the traceable number and upper traceable number, respectively, of some graph. It is also determined for which pairs n,B of integers with n - 1 <= B <= left perpendicularn(2)/2left perpendicular - 1 there exists a graph whose order equals n and upper traceable number equals B.
引用
收藏
页码:97 / 114
页数:18
相关论文
共 50 条
  • [1] ON UPPER TRACEABLE NUMBERS OF GRAPHS
    Okamoto, Futaba
    Zhang, Ping
    MATHEMATICA BOHEMICA, 2008, 133 (04): : 389 - 405
  • [2] HIGHLY TRACEABLE GRAPHS
    KAPOOR, SF
    THECKEDATH, KK
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1971, 33 (JUN): : 211 - 216
  • [3] ARBITRARILY TRACEABLE GRAPHS
    DIRAC, G
    MATHEMATICA SCANDINAVICA, 1973, 31 (02) : 319 - 378
  • [4] EXTREMAL TRACEABLE GRAPHS WITH NON-TRACEABLE EDGES
    Wojda, Adam Pawel
    OPUSCULA MATHEMATICA, 2009, 29 (01) : 89 - 92
  • [5] RANDOMLY TRACEABLE GRAPHS
    CHARTRAND, G
    KRONK, HV
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1968, 16 (04) : 696 - +
  • [6] On Traceable Line Graphs
    Zhaohong Niu
    Liming Xiong
    Graphs and Combinatorics, 2015, 31 : 221 - 233
  • [7] On Traceable Line Graphs
    Niu, Zhaohong
    Xiong, Liming
    GRAPHS AND COMBINATORICS, 2015, 31 (01) : 221 - 233
  • [8] Elementarily Traceable Irrational Numbers
    Hiroshima, Keita
    Kawamura, Akitoshi
    UNITY OF LOGIC AND COMPUTATION, CIE 2023, 2023, 13967 : 135 - 140
  • [9] Scenic graphs I: Traceable graphs
    Jacobson, MS
    Kezdy, AE
    Lehel, J
    ARS COMBINATORIA, 1998, 49 : 79 - 96
  • [10] WIENER INDEX AND TRACEABLE GRAPHS
    Yang, Lihui
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 88 (03) : 380 - 383