Quantile regression analysis of case-cohort data

被引:4
|
作者
Zheng, Ming [1 ]
Zhao, Ziqiang [1 ]
Yu, Wen [1 ]
机构
[1] Fudan Univ, Dept Stat, Sch Management, Shanghai 200433, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Case-cohort design; Counting process; Estimating equation; Random weighting; Simple random sampling; Uniform consistency; Weak convergence; EFFICIENCY;
D O I
10.1016/j.jmva.2013.07.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Case-cohort designs provide a cost effective way to conduct epidemiological follow-up studies in which event times are the outcome variables. This paper develops a quantile regression approach to the analysis of case-cohort data. Quantile regression is a highly useful tool to delineate relationships between the outcome variable and covariates. Unbiased functional estimating equations are constructed, resulting in asymptotically unbiased estimators. Efficient algorithms based on minimizing L-1-type convex functions are given. Uniform consistency and weak convergence of the resulting estimators are established. Error estimation and confidence intervals are obtained by applying a specially designed resampling procedure for case-cohort data. Simulation studies are conducted to assess the performance of the proposed method. An example is also provided for illustration. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:20 / 34
页数:15
相关论文
共 50 条
  • [1] Quantile regression for competing risks analysis under case-cohort design
    Fan, Caiyun
    Ma, Huijuan
    Zhou, Yong
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (06) : 1060 - 1080
  • [2] Quantile regression for competing risks data from stratified case-cohort studies: an induced-smoothing approach
    Son, Dongjae
    Choi, Sangbum
    Kang, Sangwook
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (08) : 1225 - 1243
  • [3] Using the Whole Cohort in the Analysis of Case-Cohort Data
    Breslow, Norman E.
    Lumley, Thomas
    Ballantyne, Christie M.
    Chambless, Lloyd E.
    Kulich, Michal
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2009, 169 (11) : 1398 - 1405
  • [4] Proportional Hazards Regression for the Analysis of Clustered Survival Data from Case-Cohort Studies
    Zhang, Hui
    Schaubel, Douglas E.
    Kalbfleisch, John D.
    BIOMETRICS, 2011, 67 (01) : 18 - 28
  • [5] Additive Hazard Regression for the Analysis of Clustered Survival Data from Case-Cohort Studies
    Liu, June
    Zhang, Yi
    JOURNAL OF MATHEMATICS, 2020, 2020
  • [6] Regression analysis for secondary response variable in a case-cohort study
    Pan, Yinghao
    Cai, Jianwen
    Kim, Sangmi
    Zhou, Haibo
    BIOMETRICS, 2018, 74 (03) : 1014 - 1022
  • [7] Relative risk regression for current status data in case-cohort studies
    Li, Zhiguo
    Nan, Bin
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2011, 39 (04): : 557 - 577
  • [8] ADDITIVE HAZARDS REGRESSION WITH CASE-COHORT SAMPLED CURRENT STATUS DATA
    Chen, Wei
    Ren, Fengling
    Tang, Guosheng
    KYBERNETIKA, 2015, 51 (02) : 268 - 275
  • [9] A New Method for Regression Analysis of Case-Cohort Interval-Censored Failure Time Data
    Jia, Ruobing
    Lou, Yichen
    Sun, Jianguo
    Wang, Peijie
    STAT, 2024, 13 (04):
  • [10] Analysis of case-cohort data: A comparison of different methods
    Onland-Moret, N. Charlotte
    van der A, Daphne L.
    van der Schouw, Yvonne T.
    Buschers, Wim
    Elias, Sjoerd G.
    van Gils, Carla H.
    Koerselman, Jeroen
    Roest, Mark
    Grobbee, Diederick E.
    Peeters, Petra H. M.
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 2007, 60 (04) : 350 - 355